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Abstract

I model communication content in its economic context for micro-founding
content bias and sentiment. Content-creating intermediaries must often report
selectively to meet content length requirements. In the model, a sender, knowing
many signals, must report a certain number of them to a receiver and help
him make decisions. I show the content more accurately describes scenarios
contradictory to the prior and preferred state and distant from extremes. This
generates apparent content biases, including appealing to the audience and
sensationalism, that are understood by the decision-maker. Such biases improve
welfare. Asymptotically, the model is tractable and smooth, linking content
to the reported fundamental information and the economic context. I discuss
contextual effects on content. The model is applied to examine media slants
and sentiment analysis, and extended to study product ratings.
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1 Introduction

Reports often reflect underlying information with bias, influenced by the context in
which they are produced. For instance, even trusted news outlets may skew their
content based on specific circumstances. This raises an intriguing question: How does
content generated by such information intermediaries reflect reality? To interpret
content in business and politics and use content data in economic research, we must
understand the relationship among content, the underlying information, and the
economic context.

In this paper, I propose a theory that micro-founds content by modeling its
formation from the perspective of information selection in reporting. It is common for
information intermediaries to selectively report and omit information in their content.
Such senders often hold abundant information but, in many circumstances, face the
problem that they cannot present all information due to some physical constraint,
such as content length rules or conventions they must respect. In the news industry,
for instance, the number of news stories must fit the newspaper space, broadcast time,
or website front page size. As Seinfeld put it, “It’s amazing that the amount of news
that happens in the world every day always just exactly fits the newspaper.”

To model this situation, I consider a sender that holds abundant news that can
improve the choices of a decision-maker. News is binary with, say, positive or negative
realizations. The sender assembles a certain number of news pieces as the content and
presents it, hoping to maximize the decision-maker’s utility.

Findings of the model include:
• The model can produce two well-documented report biases: (i) appealing to

the audience and (ii) sensationalism. The degree of the biases depends on the
economic context. Interestingly, the sender creates bias by selectively reporting
and omitting information without telling a lie. Such apparent content biases
are understood by the receiver and are a tacit arrangement for the information
intermediary to effectively communicate the most useful information. They do
not hurt welfare but lead to welfare maximization.

• The model is asymptotically tractable and smooth when the numbers of news
signals and included signals in the content become many. Asymptotically, the
fundamental information K, representing the realization of all binary news, is
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conditionally Gaussian. The content measure is the proportion of positive news
in the content. Its slope in K is a probability density function proportional to

λF (K) 1
6 λh(K) 1

6 ã′(K) 1
2 ,

where λF and λh are the effects of higher-order curvatures of respectively the
distribution and the preference, and ã is the hypothetical action supposing the
receiver knows the perfect information. Contextual parameters affect these
terms. This content measure matches how some empirical content research,
particularly sentiment research, often quantifies content.

Bias refers to the imbalance of the two realizations included in the content compared
to the full underlying information. Although the sender works for the decision-maker,
the sender will not simply describe reality in an apparently close way. That is because
the sender’s job is to recommend actions for different scenarios. And to be trusted, the
sender must recommend by presenting evidence. Knowing many signals, the sender
can separate many scenarios for herself but not for the decision-maker under a fixed
content length. The sender must pool some scenarios to generate the same content.
Therefore, the sender must ask: Which scenarios should be pooled? What is the
content that labels some pooled scenarios?

The intuition for bias comes from their answers. First, when choosing the best
pooling, the sender will minimize information compression loss, a procedure including
evaluating how important each scenario is for the decision-maker to separate. The
more valuable scenarios are those deemed more probable or prompting higher utility
improvements upon knowing. They will be pooled less aggressively. Second, I show
the sender can pool optimally while still maintaining truth-telling and logical self-
consistency in the content used for labeling these pools. The implication of such a
pool-and-label approach is as follows. The sender uses adjacent content labels for
adjacent pools of scenarios. While content labels are equidistant from each other, and
so are the scenarios, the different levels of pooling aggressiveness create non-linearity in
the relationship between a scenario and its content label. This non-linearity manifests
as the apparent content bias.

Specifically, two typical report biases, (i) appealing to the audience and (ii)
sensationalism, can be produced. In audience appealing, the sender includes more
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news that favors the version of reality the decision-maker believes or prefers to be true.
In sensationalism, the report looks more extreme than the underlying information.
This model posits that these biases may be the consequences of information selection.
The sender does not highly value elaborating on scenarios close to the extremes or
on the high side of prior belief or payoff relevance, thus creating a particular type of
the aforementioned non-linearity. Interestingly, such content bias is only apparent.
Different from the literature, this paper regards bias as the best report policy under
the physical communication constraint and as welfare maximizing.

To structurally analyze content, going asymptotic brings several advantages. First,
the asymptotic setup is relevant. The full underlying information consisting of all
signals can be summarized by a conditional Gaussian fundamental signal, which is com-
mon in economic models with learning. The content measure becomes the proportion
of positive signals in the content, also a common empirical content quantification that
is especially popular in sentiment analysis. Second, the asymptotic tractability clarifies
content’s interpretation and facilitates its empirical analysis, opening up the black
box of content measures. I show the report policy has a nice form for common utility
functions. Asymptotically, appealing to the audience is common and sensationalism is
inevitable.

The economic context matters. It refers to the value of contextual economic pa-
rameters, including prior belief, payoff relevance, news informativeness, and preference
shapes. It affects how the sender views scenarios and hence the report policy and
the report distribution. I show how the belief and the payoff relevance affect the
degree of appealing and how increasing informativeness leads to more sensationalism.
An important model feature is the separation between content’s literal meaning and
implied true meaning. The former comes from the fact that the report looks like a
collection of facts, while the latter is inferred from the report policy. The rational
decision-maker inside the context discerns the bias and knows the implied meaning.
Researchers, as third parties outside the context analyzing content data and inferring
economic information, should consider the context structurally to use data correctly.

The model adapts to many settings. I discuss the source of news narratives
and slants, providing a novel perspective on their rationalization. Methodologically,
I discuss how the model micro-founds sentiment analysis, a first in the literature.
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Furthermore, because this model features the sender compressing complex information
to simple reports with monotone labeling and creating non-linearity in the report
policy, its structure has broader implications beyond textual content. I discuss how
the same model can be applied to micro-found the analysis of a product’s star ratings
or a student’s exam scores.

Literature To the best of my knowledge, this paper is the first to identify physical
communication capacity as a source of content bias and the first to tractably micro-
found content data in context for potential empirical application. In addition, this
paper provides a novel theoretical framework for communication under limited capacity.

This paper is related to the work on media bias as a demand-side theory, as is
named in Mullainathan and Shleifer (2005), that attributes media bias to attempts to
attract an audience. Seminal work includes Mullainathan and Shleifer (2005) on media
competing for a heterogeneous audience and Gentzkow and Shapiro (2006) on the
sender’s reputation, both requiring some belief or preference heterogeneity. This paper
departs by not assuming heterogeneity while still retaining the biases. This paper also
connects to work in communication games intersected with limited attention and bias,
such as Che and Mierendorff (2019) and Perego and Yuksel (2020).

In methodology, this paper is related to the literature on communication with
limited capacity, often branded as limited attention following Simon (1959) if at-
tributing the capacity to the receiver. It intersects the works on Bayesian persuasion
(Kamenica and Gentzkow (2011)) with limited attention, including Gentzkow and
Kamenica (2014) and Bloedel and Segal (2020) and discusses optimal information
compression and attention allocation, while departs by incorporating a practically
motivated capacity measure in place of an information-theoretic one (see Chapter 5 of
Cover and Thomas (2006), and, e.g., Sims (2003)).

This paper models labels. It is crucial to empirical relevance as the content data we
observe are all labels. This feature is novel in communication games with commitment
(Kamenica and Gentzkow (2011), Bergemann and Morris (2019)) that only focuses on
posteriors and abstracts away from how labels look. It also connects to the literature
on the partial disclosure of information or hard evidence (e.g., Milgrom and Roberts
(1986), Dye (1985), and Green and Laffont (1986)). In a way, this paper shares similar
spirits to signal jamming models such as Stein (1989) in the sense that the sender
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misreports even though it seems futile in front of rational receivers.
This paper fills the vacuum of economic foundations in the empirical literature of

content analysis (see the survey of Gentzkow et al. (2019)). Because of how content is
modeled, this paper particularly speaks to founding such analysis that uses textual
frequency measures to investigate tendency or sentiment between two competing
hypotheses, such as boom and bust, politically left and right, or stable and unstable.
Examples include Antweiler and Frank (2004), Tetlock (2007), Tetlock et al. (2008),
and Loughran and McDonald (2011) that use frequencies of linguistic tokens and
Gentzkow and Shapiro (2010) and Baker et al. (2016) that use frequencies of articles
or covered events. This paper provides a method to extract information from such
textual measures and parameterize a model for content data, proposing a solution to
a standing challenge of studying content data in context.

The rest of the paper proceeds as follows. Section 2 introduces the baseline model
and illustrates the biases. Section 3 takes the baseline model to its asymptotic limit,
derives the solution and examines it. Section 4 discusses the model’s implications.
Section 5 extends the model to ratings analysis. Section 6 concludes.

2 The Baseline Model

2.1 Agents

A sender (she) reports to a decision-maker (he) information about the binary true
state of nature θ ∈ {0, 1}. The decision-maker has prior belief Pr(θ = 1) = π ∈ (0, 1)
and places a bet a ∈ [0, 1] on the true state with payoff

u(a; θ) = uθh(1 − |a − θ|) =

u1h(a) if θ = 1;

u0h(1 − a) if θ = 0,
(1)

where u1,u0 > 0 are payoff-relevance parameters of the two states, and h(·) is an
auxiliary function defined on [0, 1], capturing the closeness between the true state and
the bet. I make the following assumption about h(·).

Assumption 1. The auxiliary function h(·) has the following properties:
(i) h is twice continuously differentiable, and h′(a) > 0 and h′′(a) < 0 on (0, 1);
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(ii) For any possible posterior π′, a∗ := arg maxa(1 − π′)u0h(1 − a) + π′u1h(a) ∈ (0, 1).

The first-order assumption implies that the decision-maker is better off if his bet is
closer to the true state. The second-order assumption captures some economic benefits
of diversification. It allows interior actions a ∈ (0, 1) to be relevant. Otherwise, if
h′′(a) ≤ 0, then only a = 0 or 1 are relevant for optimization, and communication is
thorough and trivial, with only two actions to recommend but varied reports at the
sender’s disposal. I further assume h(·) ensures the optimal action is always in the
interior to illustrate information compression conveniently. An example of a sufficient
condition guaranteeing this is h′(1) = 0.

The sender shares the same preference and prior belief. That is, the information
intermediary faithfully serves the decision-maker to advance his interests. The rationale
can be the sender’s pure or strategic loyalty. To see strategic loyalty, consider the
sender s can choose her own utility us(a; θ) and prior πs as her strategic positioning
and assume her profit from her information services increases in the value created
for the decision-maker. Obviously, an optimal positioning is to align her preference
and belief to the decision-maker’s so that her communication can prompt the highest
expected utility increase for him. Such sender specification allows us to focus on a
clear-cut information compression effect without infusing the persuasion effect.

2.2 Timing, Information, and Strategy

The timing is as follows: First, the sender receives N binary signals s1, ..., sN ∈ {0, 1}
from nature. Then the sender delivers n (n ≤ N) binary reported elements r1, ..., rn ∈
{0, 1} to the decision-maker. Finally, the decision-maker chooses an action a.

A signal refers to an si and represents a news story or a piece of evidence in nature.
It is material used to form content. An economic scenario is characterized by a vector
of signal realizations s = (s1, ..., sN) ∈ {0, 1}N , namely the scenario’s full underlying
information. Assumption 2 describes the signal distribution.

Assumption 2. s1, ..., sN are conditionally independent on θ; Pr(si = θ|θ) = p > 1
2 .

A reported element refers to an ri and represents a covered news story or piece of
evidence. I do not require it to be truthful at this moment. Content is a collection
of reported elements r = (r1, ..., rn) ∈ {0, 1}n. I assume their order does not convey
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information. The positive integer n is the physical constraint of communication,
representing the content length and is exogenously given. In practice, content length
requirements or conventions may be endogenously determined in advance with various
considerations, but once pinned down, the communication content should fit that
length, no more or less.

The decision-maker’s problem in the subgame of r is to choose the best bet a∗(r)
that is essentially recommended by the sender to solve the program

max
a∈[0,1]

E[u(a; θ)|r, {σsr}s∈{0,1}N ,r∈{0,1}n ], (2)

where {σsr}s∈{0,1}N ,r∈{0,1}n is the sender’s information structure and σsr = Pr(r|s).
Anticipating a∗(r), the sender chooses an information structure that solves

max
{σsr}

U = E[u(a∗(r; θ))|{σsr}s∈{0,1}N ,r∈{0,1}n ]

s.t. σsr ≥ 0, ∀s ∈ {0, 1}N , r ∈ {0, 1}n;
∑

r
σsr = 1, ∀s ∈ {0, 1}N ;

σsr1 = σsr2 , for r1
′1(n×1) = r2

′1(n×1). (orderless reported elements)

Dimension Reduction This problem looks high-dimensional but can be simplified.
I define the fundamental of a scenario as K := ∑N

i=1 si. It is a sufficient statistic for
the scenario’s full underlying information that summarizes all the signals in Bayesian
learning. Its distribution is a binomial mixture, with K|θ ∼ Bi(N, p) if θ = 1 and
Bi(N, 1 − p) if θ = 0. I define the report as k := ∑n

i=1 ri. It summarizes content
because reported elements are orderless. The fundamental space for K is {0, 1, ..., N}
and the report space for k is {0, 1, ..., n}, simplified from {0, 1}N and {0, 1}n.

Importantly, all affine transformations of K and k also serve as equivalent variables
for the fundamental and the report, including K/N and k/n, the proportions of ones in
the full underlying information and the reported elements. Such affine transformations
preserve the equidistant nature of grids in the fundamental and report spaces and
hence do not affect the analysis of biases.

The information structure is thus {σKk}K=0,...,N ; k=0,...,n where σKk := Pr(k|K).
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The decision-maker chooses a∗(k). The sender finds the optimal {σ∗
Kk} that solves

max
{σKk}

U = E[u(a∗(k); θ)|{σKk}K=0,...,N ; k=0,...,n]

s.t. σKk ≥ 0, ∀K ∈ {0, ..., N}, k ∈ {0, ..., n};
∑

k

σKk = 1, ∀K ∈ {0, ..., N}.

This reformulated problem is central to our discussion of strategic information
compression. Intuitively, the sender tries to separate N + 1 fundamentals in {0, ..., N}
for the decision-maker, but facing the physical constraint n, she only has n + 1 reports
in {0, ..., n} at her disposal. She must strategically communicate rich fundamentals
with limited reports. Her communication capacity is thus defined as n + 1 under the
physical constraint n.

If relating this model to information theory, we may call reports codewords and the
information structure a codebook. The aim is to code input fundamentals properly.
That highlights where this paper departs from the attention literature that bounds
mutual information (Sims (2003)) or entropy. The classical information theoretic
perspective to coding, which drives the use of mutual information, is to take codewords
as meaningless symbols and study expected codeword lengths. In contrast, this paper’s
approach to coding is rooted in economics with three features: First, the objective is
utility. Second, the capacity is practically motivated. Third, it is based on the practical
observation that content data, or reports in the model, are not mere meaningless
codewords but have their literal substance that needs to be modeled. Although report
values can be any n + 1 distinctive symbols now, later I will give them substance.

2.3 Minimizing Compression Loss

To find the equilibrium, I characterize it to narrow down the search. The following three
propositions are necessary conditions that a solution to the reformulated problem must
satisfy. They describe how the sender, who compresses the more complex fundamental
to the simpler report, minimizes loss. Their proofs are in Appendix A.

First, the sender must use pure strategies. The intuition is straightforward: if the
sender is loyal, she has no incentive to infuse unnecessary noise in her reporting by
using mixed strategies that confuse the decision-maker.

Proposition 1. (Pure strategy) Under Assumption 1, σ∗
Kk ∈ {0, 1} for any K, k.
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Therefore, the sender’s optimal strategy is to partition the set of fundamentals and
map fundamentals in each partition set to a report. Two questions follow: How many
reports are in equilibrium? Which fundamentals are pooled for the same report?

The next proposition states that all reports must be used in equilibrium.

Proposition 2. (Surjection) Under Assumption 1 and if Pr(K|θ = 1)/ Pr(K|θ = 0)
is strictly monotone in K, for any given k, there exists K such that σKk > 0.

Intuitively, every distinctive report is valuable in separating fundamentals and
should not be wasted. Because the sender benefits from recommending actions
customized to scenarios with the help of reports, she enjoys having more reports at her
disposal. An extra report is always a valuable addition to any information structure
with pooling because the sender can at least take a partition set of fundamentals,
break it into two sets, map one set to the old report and the other set to the extra
one, strictly increasing expected utility. That implies the sender must use all n + 1
reports and create n + 1 partition sets.

The last proposition discusses which fundamentals are pooled. Intuitively, it is
optimal to pool “similar” fundamentals to minimize compression loss. The proper way
to measure similarity between fundamentals is by the closeness of their Bayes factors
Λ(K). For K,

Λ(K) := Pr(K|θ = 1)
Pr(K|θ = 0) =

(
p

1 − p

)2K−N

under Assumption 2 and is strictly monotone in K. Proposition 3 explores this idea.

Proposition 3. (Cutoff structure) Under Assumption 1, the optimal partition of the
fundamentals for the reformulated problem has the following properties.

(i) If Λ(K) is different for all K = 0, ..., N , then let (Kj)N
j=0 be the permutation

of (0, ..., N) with Λ(K0) < ... < Λ(KN). There exist cutoffs Ki∗
1
, ..., Ki∗

n
so that

the optimal partition {B0, ..., Bn} is B0 = {K0, ..., Ki∗
1
}, B1 = {Ki∗

1+1, ..., Ki∗
2
}, ...,

Bk′ = {Ki∗
k′ +1, ..., Ki∗

k′+1
}, ..., Bn = {Ki∗

n+1, ..., KN}.
(ii) If Assumption 2 holds, then there exist cutoffs {K∗

1 , ..., K∗
n} so that the optimal

partition {B0, ..., Bn} is B0 = {0, ..., K∗
1}, B1 = {K∗

1 + 1, ..., K∗
2}, ... , Bk′ = {K∗

k′ +
1, ..., K∗

k′+1}, ... , Bn = {K∗
n + 1, ..., N}.
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Proposition 3 states that the optimal solution to the reformulated problem has
an ordered partition structure in which the sender pools K with similar Bayes fac-
tors. Under Assumption 2, the sender should pool adjacent K. The equilibrium is
characterized by n cutoffs separating fundamentals into n + 1 ordered partition sets.

The following example visually illustrates the intuition of Proposition 3.

Example 1. Let u(a; θ) = uθ cos
(

ϖ
2 |a − θ|

)
by setting h(a) = sin

(
ϖ
2 a
)
, where ϖ is

the mathematical constant pi. Under Assumption 2, the sender’s objective is

U =
∑

0≤i≤n

∥
∑

vK∈Bi

vK∥

where vK =
(
(1 − π)u0C

K
N pN−K(1 − p)K , πu1C

K
N pK(1 − p)N−K

)
∈ R2, the norm is

Euclidean, and Bi is a partition set in the partition {B0, ..., Bn}.
Geometrically, each fundamental K can be represented by a vector vK . They are

blue arrows in Fig. 1. The sender calculates her utility as follows: First, she partitions
all fundamental vectors into n + 1 sets. Then she calculates each partition set’s
representative vector, being the vector sum of all vectors in that set. The Euclidean
length of each representative vector is the contribution of the fundamentals in that
partition set to the sender’s expected utility. Finally, she calculates the sum of all
representative vectors’ lengths which equals the expected utility.

(1 − π)u0CK
N pN−K(1 − p)K

πu1CK
N pK(1 − p)N−K

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Figure 1: Fundamentals (arrows, K = 0, ..., 5 anticlockwise) and Partition (dashed) in Example 1
This figure is plotted under the following parameter values: N = 5, n = 3, π = p = 0.6, u1 = u0 = 1.

To maximize her expected utility, the sender should find the optimal partition
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that minimizes the loss of representative vector lengths caused by summing vectors in
each partition set. Intuitively, the sender should pool vectors with similar angles. For
vK, its angle is ã(K) = arctan π

1−π
u1
u0

Λ(K), strictly monotone in Λ(K) and hence K.
Therefore, the sender should pool adjacent K. The partition is illustrated in Fig. 1.

Finally, it is worth noting that maximizing expected utility in the reformulated
problem only involves solving for the optimal partition and does not involve how
reports are attached to the partition sets, as long as a distinctive report is attached to
each partition set. In that sense, multiple equilibria must exist because the sender
can permute her report attachment arbitrarily. Report assignment is simply an act of
labeling from a utility maximization point of view for now.

2.4 Bridging Reports and Substance

Content data are not arbitrary symbols. In practice, readers of newspapers or essays
want more than blunt action recommendations. They are still interested in facts
and rely on information intermediaries to know facts. They will not subscribe to
information services delivering reports that look obviously detached from reality.
Consequently, information intermediaries will not publish just any arbitrary symbols
as the content, hoping the audience to somehow interpret and accept them. Instead,
information intermediaries must frame those reports as some form of presentation
of reality, hoping to convince the audience their reporting is fact-based or at least
withstand some common-sense scrutiny from the audience.

To connect symbols with substance, I introduce two candidate criteria that reflect
common expectations of an information intermediary on characters like trustworthiness,
reliability, and professionalism. Such criteria do not constrain optimization.

The first criterion is (verifiable) honesty, or the ability to survive fact-checks. It
captures the decision-maker’s preference for facts. Specifically, to satisfy this criterion,
the sender must report verifiably real signal realizations.

Criterion 1. (Honesty) An information structure is honest if

{r1, ..., rn} ⊂ {s1, ..., sN}.

The criterion’s condition can be rewritten as the report of any K being no more
than K and no smaller than K − (N − n). Importantly, this interpretation of honesty

11



only requires no constituent piece of the content is fabricated rather than a balanced
coverage. Suppose N = 100 with fifty ones and fifty zeros in the full underlying
information. With n = 50, an honest report can contain fifty ones and no zeros, being
very biased but still surviving fact-checks. Hence, this criterion is not difficult to meet.

The second candidate criterion is (logical) self-consistency, or that the sender
cannot contradict herself. That means the report should increase in the fundamental.

Criterion 2. (Self-consistency) An information structure is self-consistent if for any
K1, K2 such that K1 < K2, conditions σK1k1 > 0 and σK2k2 > 0 imply k1 ≤ k2.

Under self-consistency, if one fundamental favors θ = 1 over θ = 0 at a higher degree
than another fundamental, readers will expect the report on the former fundamental
to exhibit more favor for θ = 1 as well. To interpret this, note that there are two
meanings associated with a report: a literal meaning which comes from the fact that
the content looks like a collection of signals, and a true fundamental meaning implied
from the information structure. Self-consistency requires the two meanings to move
in the same direction. For instance, suppose θ = 1 and 0 represent the good and
bad states of the economy. When receiving better economic news from nature, a
self-consistent sender should produce a more optimistic-looking report rather than
a more pessimistic-looking one. Information intermediaries that are not logically
self-consistent may be viewed as strange and untrustworthy.

Theorem 1 is this paper’s first main result.

Theorem 1. Under Assumption 1 and Assumption 2, there exists a solution to the
reformulated problem that satisfies both Criteria 1 and 2. Additionally, any solution
that satisfies Criterion 2 must also satisfy Criterion 1.

The proof is straightforward: For any equilibrium, let the optimal ordered partition
sets B0, ..., Bn map to reports 0, ..., n in order. This information structure is the only
self-consistent one under the optimal partition. Also, it is obviously always honest.

I call this self-consistent optimal information structure the content-generating
information structure. It must exist, but I have not yet characterized where are
the cutoffs for the optimal ordered partition and hence what the content-generating
information structure looks like. The analytical characterization is left for the next
section, where I take the discrete baseline model to an asymptotic limit. For now,
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we can solve the discrete problem by exhaustively computing values of every ordered
partition to search for the optimal cutoffs.

2.5 Illustrating Two Types of Biases

In the baseline model, bias refers to the difference between k/n and K/N . Although
discreteness may create a minor wedge, it is not the point and will disappear in the
asymptotic model later. Biases arise from the optimal strategic information compres-
sion with the content-generating information structure, as Example 2 illustrates.

Example 2. A newspaper reports to an investor who represents the target readers.
The market state θ tomorrow is boom (1) or bust (0). The investor has access to two
investment opportunities, one paying off u1 upon boom and zero upon bust, and the
other zero upon boom and u0 upon bust. The investor chooses a portfolio proxied
by a ∈ [0, 1], which represents the position in the former asset when normalizing the
short-selling constraint to 0 and budget to 1. The market belief for booms is π. The
editor has N = 5 news stories about the economy, but the newspaper space only
accommodates n = 3.

The content-generating information structure depends on the contextual economic
variables, including π, u1, u0, p, and the utility shape. I focus on the effects of π, u1,
and u0 and illustrate two cases under different parameter values.

Case 1 in Fig. 2 describes content bias that appeals to the audience, which becomes
obvious as πu1 greatly exceeds (1 − π)u0. The left panel shows the content-generating
information structure, and the right panel shows the report curve, defined as k/n

against K/N . The optimal partition sets are {0}, {1}, {2} and {3, 4, 5} and are
mapped to reports 0, 1, 2, and 3 in order. The policy can be equivalently described
with K/N and k/n, respectively interpreted as the fundamental optimism level and the
content’s optimistic sentiment. The newspaper disproportionately omits bad stories,
creates an upward-tilted k/n, and appears to cater to its audience who believe in booms
or can make lucrative investments that will pay off in booms. For instance, when the
fundamental is 20% optimistic with one good story and four bad stories, the editor
hides two bad stories and makes the content 33% optimistic. When the fundamental
is 60% optimistic with three good and two bad, the editor deletes anything bad and
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Figure 2: Appealing to the Audience, Information Structure (Left) and Interpolated Report Curve
(Right)

This figure is plotted under the following parameter values: N = 5, n = 3, πu1 = 0.9,
(1 − π)u0 = 0.1, h(a) = sin(ϖa/2).
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Figure 3: Sensationalism, Information Structure (Left) and Interpolated Report Curve (Right)
This figure is plotted under the following parameter values: N = 5, n = 3, πu1 = 0.6,

(1 − π)u0 = 0.4, h(a) = sin(ϖa/2).

reports a striking 100% optimism level.
Case 2 in Fig. 3 illustrates the bias of sensationalism under comparable levels of

πu1 and (1 − π)u0. The content-generating information structure involves optimal
partition sets {0, 1}, {2}, {3} and {4, 5} which are respectively mapped to reports 0,
1, 2, and 3. Apparently, the newspaper reports exaggeratedly in both optimistic and
pessimistic directions by including disproportionately more stories that are aligned
with the fundamental’s overall direction to make the content look extreme. For
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example, when the fundamental is 80% (20%) optimistic, it reports 100% (0%). When
the fundamental is 60% (40%) optimistic, it reports 67% (33%).

The first step to interpreting these biases is to interpret the partition. An infor-
mation structure derives value from its ability to customize action recommendations
to scenarios. Intuitively, reports are content space allocations between the two news
types. The editor would like to ideally customize a different look for the newspaper to
each scenario. Bounded by the space, however, the sender cannot be specific to every
scenario, so she must only pick some scenarios to customize action recommendations
more carefully by separating them more aggressively. Depending on the economic
context, the sender assesses each scenario’s potential to contribute to the expected
utility once she customizes to it more carefully. Her assessment is comprehensive and
covers each scenario’s probability and action implications.

Specifically, in Case 1, with a high πu1, the decision-maker strongly tends to bet
close to 1 without the report. He does not place much value on new information
that confirms θ = 1 because even if he receives a report that accurately identifies a
confirmatory scenario, he will not do something very different. What he truly finds
valuable is accurate information about contradictory scenarios, which will help the
decision-maker to rethink his action. Hence, the sender follows Fig. 2 and more
aggressively pools information that favors θ = 1.

In Case 2, absent strong audience-appealing effects, what becomes obvious is
that the decision-maker is not very interested in having tail scenarios differentiated.
Two reasons explain this. First, tail scenarios have slim probabilities and thus do
not contribute much to expected utility. Second, even if the sender separate tail
scenarios, the decision-maker will still choose some extreme actions similar to when
those scenarios are not separated. Therefore, the sender follows Fig. 3 and more
aggressively pools scenarios near extremes.

The second step is to translate the partition to the report. Two observations
are helpful. First, the highest and lowest fundamentals are respectively mapped to
the highest and lowest reports without bias. Crucially, unbiased reporting on end
scenarios provides two anchors for analyzing bias in middle scenarios. Second, reports
for those more newsworthy fundamentals, i.e., the moderate or contradictory ones
are more sensitive to fundamentals than reports for less newsworthy scenarios. The
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same incremental increase in K/N may cause a smaller increase in k/n if such K/N is
insignificant or a larger increase if otherwise. Such difference in sensitivities stems from
pooling adjacent fundamentals at different intensities on an equidistant fundamental
grid before mapping these pools to an also equidistant report grid monotonically.

We now analyze biases with these two observations. For some newsworthy funda-
mentals in a region, their range in terms of K/N is smaller than their report range in
terms of k/n, due to their higher level of report sensitivity. Between the end scenarios
with no bias, if such a fundamental region is contradictory, its report region may
expand to a territory that looks not so contradictory or even confirmatory. If such a
fundamental region is moderate, its report region may expand to a relatively more
extreme territory. Furthermore, under a fixed 100% range of k/n, the report regions
for less valuable fundamentals are squeezed to the side: Confirmatory fundamen-
tals are forced to associate with even more confirmatory reports and near-extreme
fundamentals with more extreme reports.

Two remarks are in order. (1) The report curve that depicts the relationship between
reports and fundamentals is the quantitative representation of the equilibrium. (2)
Interestingly, the report curve is also the curve of the cumulative counting frequencies
of optimal cutoffs. It is naturally so because the report for K/N is its associated
k, or equivalently k/n, which can also be interpreted as the percentage of cutoffs
below K/N . This identity is intuitive: If the report curve has a high slope somewhere,
then these fundamentals are getting separate reports and are the more valuable ones.
Naturally, the sender inserts denser cutoffs around those fundamentals, leading to a
higher cutoff concentration, or equivalently a higher slope in the cumulative cutoff
distribution. This observation is useful in asymptotics.

2.6 Welfare

Contrary to the conventional wisdom that biases hurt welfare, this model shows biases
may reflect the sender’s efforts to maximize welfare. The proper welfare measure for
both the decision-maker and the society is the sender’s ex-ante maximized utility.
Traditionally, the reasoning of why biases hurt welfare often rests on the presumption
that biases result from agency problems. This paper, however, points out that
biases may be independent of agency and simply the most efficient communication
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arrangement under a physical communication capacity. Consequently, biases do good
for the welfare of the principal and society.

The result also implies that other communication policies are suboptimal for the
decision-maker and social efficiency, notably including two policies that seem to be
the widely accepted ethical standard: (1) The sender produces report content that
best resembles the full underlying information. (2) The sender fully randomizes her
reporting without any deliberate selection, with the ex-ante expected utility being
the same as choosing n reported elements from n signals since the sender can simply
report the first n of the N signals.

Parameters N and n affect welfare. The maximized utility strictly increases in N

because the sender recommends better actions with richer fundamental information
under the same communication capacity. The maximized utility also strictly increases
in n, as a corollary of Proposition 2: Given n1 < n2, the optimal information structure
under n1 is suboptimal under n2 because it disposes of a report. Intuitively, welfare
loss comes solely from compression and a bigger n implies a smaller loss.

3 The Asymptotic Model

The baseline model extends to an asymptotic model if N and n go to infinity. The
extension has benefits: First, a large N better captures the rich and often overly
abundant information in the real world, and a large n better describes the nuanced
content used in practice. Second, asymptotics produces tractability and smoothness
that facilitate a clear interpretation and convenient empirical analysis of the content.

3.1 Model Setup and Solution

The agents remain the same with utility that depends on h(·).

Assumption 3. h(·) is fifth continuously differentiable; h′(a) > 0, h′′(a) < 0 on (0, 1).

I compare Assumption 1 with Assumption 3. First, Assumption 3(1) requires
more smoothness than Assumption 1(1) since asymptotics will involve higher order
derivatives. Second, Assumption 1(2) is removed for asymptotics. Assumption 1(2)
was included simply for convenience: Suppose otherwise some fundamentals trigger
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the same action of 1 (or 0) if separated, then the sender will pool them because no
information will be lost. One can view such a pool as one fundamental, thus effectively
reducing the total number of fundamentals. If that new total number is greater than
n, Theorem 1 still holds since such a pool has the most extreme Bayes factor. If it
is no greater than n, there is no information compression. I use Assumption 1(2) to
avoid discussing those cases unnecessarily and losing the focus. In the asymptotic case,
however, the discussion of some fundamentals generating the same extreme action is
straightforward, so I forgo Assumption 1(2).

Now, let the binary signals si take values from {−σ/
√

N, σ/
√

N} instead of {0, 1},
where σ > 0 is a parameter. Fixing N , I am simply reframing the signals using an
affine transformation. The new information environment is equivalent to the previous
one. The sum K = ∑N

i=1 si, still defined as the fundamental, is the sufficient statistic
of the full underlying information. Noticeably, K is no longer a nonnegative integer,
but is a real number that can be negative.

Let µ > 0 be a parameter and set

Pr
(

si = σ√
N

∣∣∣∣∣ θ
)

= 1
2

(
1 + µθ

σ
√

N

)
,

where µ1 = µ and µ0 = −µ. This is to relate p with N . Because the program is
still the baseline model for a fixed pair of N and n, Proposition 1, Proposition 2 and
Proposition 3 and Theorem 1 apply and the content-generating information structure
features n optimal cutoffs for K.

Among possible paths of (N, n) reaching infinities, I consider when N greatly
exceeds n by letting N go to infinity first and n next. It is a two-step process: In the
first step, N goes to infinity for a fixed n. The sender produces a simple report on the
rich and complex fundamental information. Since the content-generating information
structure under (N, n) features n cutoffs for K, the information structure under N

being taken to infinity will feature n cutoffs on the real line which becomes the domain
of K. In the second step, n also goes to infinity as the sender adds sophistication
in reporting. The content-generating information structure is characterized by not
n cutoffs, but infinite cutoffs standardized to a unit measure that are continuously
distributed on the real line, forming a cutoff density.

18



The first step starts with N → ∞. By standard arguments of in-fill asymptotics,

K(N)|θ ⇒ N(µθ, σ2)

where ⇒ stands for convergence in law. The limiting fundamental K follows a Gaussian
mixture distribution and is supported on R. Assumption 2’s analogue is thus the
following Assumption 4(ii) (and (ii) implies (i)).

Assumption 4. (i) FK|θ=1 and FK|θ=0 satisfy the following properties:
(a) They are absolutely continuous and fifth continuously differentiable;
(b) Density fK|θ=1(x) > 0 iff. x ∈ (K

¯
(1), K̄(1)), and fK|θ=0(x) > 0 iff. x ∈ (K

¯
(0), K̄(0)),

with −∞ ≤ K
¯

(0) ≤ K
¯

(1) < K̄(0) ≤ K̄(1) ≤ +∞;
(c) The likelihood ratio fK|θ=1(x)/fK|θ=0(x) is strictly increasing on (K

¯
(1), K̄(0));

(d) The range of (1 − π)u0h
′(1 − a)/πu1h

′(a) for a ∈ (0, 1) is a subset of the range of
fK|θ=1(x)/fK|θ=0(x) for x ∈ (K

¯
(1), K̄(0)).

(ii) K|θ ∼ N(µθ, σ2).

The identity between the report curve and the cumulative counting frequencies of
cutoffs still holds. Let κ∗(n) = {K∗

1 , ..., K∗
n} be the set of cutoffs such that the ordered

partition {B0, B1, B2, ..., Bn} is {(−∞, K∗
1 ), [K∗

1 , K∗
2 ), [K∗

2 , K∗
3 ), ..., (K∗

n, +∞)}. Define

βn(K) = 1
n

∑
K′∈κ∗(n)

1K′≤K (3)

as both the cumulative frequencies and the report curve. It fully characterizes the
equilibrium in which κ∗(n) maximizes the utility

n∑
i=0

{πu1 Pr (K ∈ Bi|θ = 1) h(a∗
i ) − (1 − π)u0 Pr (K ∈ Bi|θ = 0) h(1 − a∗

i )} . (4)

For any i, a∗
i in Eq. (4) is the recommended action for Bi and hence subject to

πu1 Pr (K ∈ Bi|θ = 1)
(1 − π)u0 Pr (K ∈ Bi|θ = 0) = h′(1 − a∗

i )
h′(a∗

i )
.

The problem involves choosing cutoffs for the Gaussian-mixture fundamentals, thus
avoiding the complexity brought by the discreteness of the fundamental space. As an
extension of the baseline model, the equilibrium under N → ∞ can be viewed as sat-
isfying Proposition 1, Proposition 2, Proposition 3 as well as Theorem 1. The content-
generating information structure is verifiably honest and logically self-consistent.
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In the second step, the sender lets n → ∞. The sender seeks to find β∞(K) :=
limn→∞ βn(K) that is both the limiting cumulative frequencies of cutoffs curve and
the report curve. The limiting equilibrium is viewed as satisfying Proposition 1,
Proposition 2, Proposition 3 and Theorem 1, and meets both criteria.

Obviously, β∞(K) is a qualified cumulative distribution function by construction.
It is increasing, right-continuous, and defined on R with 0 and 1 as limits at in-
finities. Hence, β∞(K) is a distribution that induces a canonical probability space
(R, B(R), P′), with P′(S) of any S ∈ B(R) being the Lebesgue measure of β∞(S).
This probabilistic perspective to the report curve has the following two implications.

First, the communication capacity is a unit measure. In the baseline model, the
communication capacity is the number of partition sets n + 1 or, one can say, the n

cutoffs that split those partition sets. As n → ∞, the number of cutoffs goes to a
probability of one, which becomes the proper asymptotic capacity measure.

Second, the sender may alternatively solve for the optimal β′
∞(K), the derivative

of β∞(K). Should β∞(K) be absolutely continuous, β′
∞(K) is a density of cutoffs.

Both β∞(K) and β′
∞(K) equivalently characterize the equilibrium. I call β′

∞(K) the
newsworthiness curve because it characterizes the fundamentals’ worth for coverage: A
bigger β′

∞(K) around some K means the sender chooses to insert more cutoffs around
that K to separate it, which reflects the sender’s assessment that such a scenario
deserves more elaborate coverage. It echoes the discussion in the baseline model on
how valuable each scenario is for differentiating, but in the asymptotic setup such a
discussion can be conducted accurately with β′

∞(K).
To show this paper’s connection to the limited attention research, I also name

β′
∞(K) the capacity allocation curve, analogous to the attention allocation curve in

the literature. The sender distributes the scarce resource of cutoffs up to a unit
measure, which comes from the physical constraint binding any of the sender, the
decision-maker, or the channel. In fact, if one interprets the constraint as facing
the decision-maker like the attention literature, β′

∞(K) can be properly called the
attention allocation curve. The concept of communication capacity or attention in
this paper has a strong economic motivation, complementing the existing information
theoretic literature.

What is the equilibrium β′
∞(K)? To answer this question, I introduce the perfect
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information optimal action ã(K), the hypothetical best action assuming the decision-
maker knows K. Let

R(t) = πu1fK|θ=1(t)
(1 − π)u0fK|θ=0(t)

.

In the case h′(1)/h′(0) < R(K) < h′(0)/h′(1), ã(K) ∈ (0, 1) is the solution to
R(K) = h′(1 − ã)/h′(ã). Otherwise, if R(K) ≤ h′(1)/h′(0), then ã(K) = 0; if
R(K) ≥ h′(0)/h′(1), then ã(K) = 1. Under Assumption 4(i)(d), the range of ã(K)
covers (0, 1). If fundamentals that induce extreme actions of 1 or 0 exist under a
specific economic context, they should be pooled without loss and generate an extreme
report of 1 or 0 due to their extreme Bayes factors. It is only necessary to pin down
β∞(K) or β′

∞(K) for those less radical fundamentals that induce interior ã(K). I
denote the interval on which ã(K) ∈ (0, 1) as (K

¯
, K̄).

The equilibrium is characterized in Theorem 2, this paper’s second main result.

Theorem 2. (Asymptotic capacity allocation) Under Assumption 3:
(1) Suppose Assumption 4(i) holds. Then on (K

¯
, K̄),

β′
∞(K) ∝ λh(K) 1

6 λF (K) 1
6 ã′(K) 1

2 (5)

if it is integrable, where

λh(t) = − (h′(ã(t))h′′(1 − ã(t)) + h′(1 − ã(t))h′′(ã(t))) ;

λF (t) = F ′′
K|θ=1(t)F ′

K|θ=0(t) − F ′
K|θ=1(t)F ′′

K|θ=0(t).

(2) Suppose Assumption 4(ii) holds. Then

λF (t) ∝ exp
(

− t2

σ2

)
.

Theorem 2 decomposes newsworthiness into three components: λh(K) about the
curvature of the utility function, λF (K) about the curvature of the fundamental
distribution, and ã′(K), the sensitivity of the hypothetical perfect information best
action. Theorem 2 can be alternatively written in the log form as the log density
of cutoffs being linear in the logs of λh(K), λF (K), and ã′(K), with loadings of 1/6,
1/6, and 1/2. The report curve is an antiderivative of β′

∞(K) scaled as a cumulative
distribution function. The proof of Theorem 2 is in Appendix B.

Another way to present Eq. (5) is to define H1(K) := h(ã(K)), H0(K) := h(1 −
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ã(K)), and λH(K) := H ′
1(K)H ′′

0 (K) + H ′′
1 (K)H ′

0(K). Then Eq. (5) is

β′
∞(K) ∝ λH(K) 1

6 λF (K) 1
6 .

With Theorem 2, β′
∞(K) under common utility functions can be conveniently

calculated. Table 1 lists some examples. Some report curves have nice forms: With ex-
ponential utility, for instance, the report curve is a cumulative distribution function for
a truncated N(0, 3σ2) distribution with asymmetric tail cutoffs. Also, λh(K) 1

6 ã′(K) 1
2

is proportional to a logistic density for the cosine difference preference, a hyperbolic
secant density for the quadratic preference, and a hyperbolic secant density raised
to certain powers for log and power preferences. In Fig. 4, I present the capacity
allocation and report curves using the cosine difference preference as an example.

Table 1: Equilibrium With Some Common Utility Functions Under Assumption 4(ii)

h(a) β′
∞(K) ∝ exp

(
− K2

6σ2

)
× ...

Cosine difference sin
(

ϖ
2 a
) (

(πu1)2 exp
( 2µ

σ2 K
)

+ ((1 − π)u0)2 exp
(
− 2µ

σ2 K
))− 1

2

Quadratic A(1 − a)2 + B
(A < 0)

(
πu1 exp

(
µ

σ2 K
)

+ (1 − π)u0 exp
(
− µ

σ2 K
))−1

Log ln(a)
(
πu1 exp

(
µ

σ2 K
)

+ (1 − π)u0 exp
(
− µ

σ2 K
))− 1

3

Power 1
1−γ a1−γ

(γ > 0, γ ̸= 1)

(
(πu1)

1
γ exp

(
µ

γσ2 K
)

+ ((1 − π)u0)
1
γ exp

(
− µ

γσ2 K
)) γ−2

3

Exponential C0 − C1 exp(−Aa)
(A, C1 > 0)


1 for − σ2

2µ ln
(

πu1
(1−π)u0

)
− Aσ2

2µ < K ...

... < − σ2

2µ ln
(

πu1
(1−π)u0

)
+ Aσ2

2µ ;
0 otherwise

Theorem 2 is the key asymptotic result. Importantly, it is not about revelation,
although it characterizes a relationship with no compression loss. In fact, with
continuous fundamental and report values, any 1-to-1 correspondence can be a loss-
free report curve. The real important question answered in Theorem 2 is which 1-to-1
correspondence we will end up with in the limit of either the baseline problem or
the asymptotic problem in Eq. (4) that are economically meaningful. The analytical
report policy in Theorem 2 serves as a tractable asymptotic approximation to the
baseline or Eq. (4)’s equilibrium information structures.

Posterior. Let β−1
∞ be the inverse of β∞ on (K

¯
, K̄) and Φ be the standard Gaus-

sian cumulative distribution function. Under Assumption 4(ii), the decision-maker’s
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Figure 4: Illustration of Theorem 2 with Cosine Difference Preference
This figure is plotted under the following parameter values: µ = 0.5, σ = 1, u1/u0 = 2, π = 2/3. The

value of normalized λh(K) 1
6 ã′(K) 1

2 at −σ2 ln(πu1/(1 − π)u0)/2µ is set to 1. The report
distributions in blue, red, and dotted lines are respectively the conditional density on θ = 0, on

θ = 1, and the unconditional density.

posterior belief on seeing a report ρ ∈ (0, 1) is the same as knowing K = β−1
∞ (ρ), i.e.,

Pr(θ = 1|ρ) =
π exp

(
2µ
σ2 β−1

∞ (ρ)
)

π exp
(

2µ
σ2 β−1

∞ (ρ)
)

+ 1 − π
.

For ρ = 0 and ρ = 1, the posteriors are respectively

πΦ(K
¯

−µ
σ

)
πΦ(K

¯
−µ
σ

) + (1 − π)Φ(K
¯

+µ
σ

)
and

π(1 − Φ( K̄−µ
σ

))
π(1 − Φ( K̄−µ

σ
)) + (1 − π)(1 − Φ( K̄+µ

σ
))

.

3.2 Determinants of Capacity Allocation

The three components in Eq. (5) originate from the problem’s higher-order curvatures
and fall into two groups. The first group is λF (K) 1

6 , which solely depends on the
fundamental’s conditional distributions and intuitively describes the direct effect of
likelihood on newsworthiness. It comes from the optimality condition for a∗

i

FK|θ=1(K∗
i+1) − FK|θ=1(K∗

i )
FK|θ=0(K∗

i+1) − FK|θ=0(K∗
i ) = (1 − π)u0h

′(1 − a∗
i )

πu1h′(a∗
i )

≡
fK|θ=1(K̃(a∗

i ))
fK|θ=0(K̃(a∗

i ))
. (6)
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Here, K̃(a) is the inverse of ã(K) on (K
¯

, K̄) and stands for the perfect information
fundamental equivalence for a set of fundamentals inducing action a. The second
equality in Eq. (6) follows from the definition of ã(K). This condition implies the
relative location of K̃(a∗

i ) within [K∗
i , K∗

i+1] is

K̃(a∗
i ) − K∗

i

K∗
i+1 − K∗

i

≈ 1
2 + 1

24

(
d ln λF (K)

dK

∣∣∣∣∣K=
K∗

i
+K∗

i+1
2

)
(K∗

i+1 − K∗
i ).

The second group is λH(K) 1
6 = λh(K) 1

6 ã′(K) 1
2 . Intuitively, ã′(K) describes how

sensitive the optimal action is to fundamentals. And λh(K), which only depends on
K through ã(K), describes how such action sensitivity translates to utility sensitivity.
By the optimality condition for K∗

i

h(a∗
i ) − h(a∗

i−1)
h(1 − a∗

i ) − h(1 − a∗
i−1)

= (1 − π)u0fK|θ=0(ã(K∗
i ))

πu1fK|θ=1(ã(K∗
i )) ≡ h′(ã(K∗

i ))
h′(1 − ã(K∗

i )) ,

the position of ã(K∗
i ) within [a∗

i−1, a∗
i ], or equivalently K∗

i within [K̃(a∗
i−1), K̃(a∗

i )], is

K∗
i − K̃(a∗

i−1)
K̃(a∗

i ) − K̃(a∗
i−1)

≈ 1
2 + 1

24

(
d ln λH(K)

dK

∣∣∣∣∣K=
K̃(a∗

i−1)+K̃(a∗
i

)
2

)
(K̃(a∗

i ) − K̃(a∗
i−1)).

Intuitively, with totally one unit of cutoffs, studying their allocation among localities
equals studying the relative cutoff allocation between any two different localities.
Locally, for a cutoff K∗

i to draw nearby cutoffs, it may attract K̃(a∗
i ) more than

its neighbor K∗
i+1 does, and meanwhile such K̃(a∗

i ) may attract K∗
i+1 more than

the more distant K̃(a∗
i+1) does. Hence, both 1

24
d ln λF (K)

dK
and 1

24(d ln λH(K)
dK

) matter
in characterizing local relative cutoff concentration in a neighborhood. Then for
two localities K1 and K2 apart, their relative cutoff allocation depends on properly
aggregating such local relative concentration characterizations between K1 and K2.
That eventually leads to Theorem 2.

What is the intuitive economic interpretation of λF (K) and λH(K)? Notice that

λF (K) = fK|θ=0(K)fK|θ=1(K)(ln fK|θ=1(K)
fK|θ=0(K))′, λH(K) = H ′

0(K)H ′
1(K)(ln H ′

1(K)
H ′

0(K))′.

That is, λF (K) increases in the two conditional likelihoods and the elasticity of the
likelihood ratio. And λH(K) increases in the two conditional value sensitivities and
the elasticity of the value sensitivity ratio, each of which can be further decomposed
into a utility sensitivity term and an action sensitivity term ã′(K) with the chain rule.
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These terms fully describes what makes a fundamental newsworthy.

3.3 Characterizing Bias in the Report Curve

Bias is a report curve property because the curve captures the report policy and
measures how the report distribution distorts the fundamental distribution.

Appealing to the Audience. To identify the audience appealing bias in the report
policy, I compare the location of β′

∞(K) with the midpoint of K. The proper midpoint
for K is zero since it is the case under any finite N . Compared with zero, the more
β′

∞(K) leans against the direction dictated by the sign of πu1
(1−π)u0

− 1, the more the
report policy should be viewed as biased toward that direction.

Let K1/2 denote −σ2

2µ
ln πu1

(1−π)u0
which solves ã(K) = 1/2 under Assumption 4(ii).

Obviously, its sign is opposite to πu1
(1−π)u0

− 1. Here is a bias characterization.

Definition 1. β∞(K) is “strongly appealing” if β′
∞(K) ≥ β′

∞(−K) and “strongly
alarmist” if β′

∞(K) ≤ β′
∞(−K), for any K such that KK1/2 > 0.

This is a strong definition. Suppose a strongly appealing β∞(K) is the distribution
of some random variable, then its mean (if well-defined) and median, both being
commonly used location notions of distributions, and the average of the upper and
lower α% quantiles for any α are all on the same side of zero as K1/2.

What is the source of audience appealing? Under Assumption 4(ii), λF (K) 1
6 is

proportional to a Gaussian N(0, 3σ2) density and does not skew. Hence, such bias is
from λh(K) 1

6 ã′(K) 1
2 . Proposition 4 describes some shape properties of λh(K) 1

6 ã′(K) 1
2 .

Proposition 4. Under Assumption 3 and Assumption 4(ii),
(1) ã(K) is symmetric about (K1/2,

1
2), and ã′(K) is symmetric about K = K1/2;

(2) λh(K) is symmetric about K = K1/2.

Proposition 4 implies β′
∞(K) is the multiplication of two symmetric curves: λF (K) 1

6

about zero and λh(K) 1
6 ã′(K) 1

2 about K1/2. This insight leads to Proposition 5, a
sufficient condition for the strongly appealing property.

Proposition 5. Under Assumption 3 and Assumption 4(ii),
(1) β∞(K) is strongly appealing if λh(K) 1

6 ã′(K) 1
2 is hump-shaped, i.e., it increases on
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(K
¯

, K1/2) and decreases on (K1/2, K̄);
(1*) β∞(K) is strongly alarmist if λh(K) 1

6 ã′(K) 1
2 is U-shaped, i.e., it decreases on

(K
¯

, K1/2) and increases on (K1/2, K̄);
(2) λh(K) 1

6 ã′(K) 1
2 is hump-shaped (U-shaped) if and only if for a < 1

2 ,

d

da

(
h′(a)3h′(1 − a)3

(−h′(1 − a)h′′(ã) − h′′(1 − a)h′(a))2

)
≥ (≤) 0; (7)

(3) λh(K) 1
6 ã′(K) 1

2 is hump-shaped if both h′′(a)
h′(a) and h′′′(a)

h′(a) decrease in a.

Proposition 5 only involves h and is simple to verify. Many common utilities, includ-
ing cosine difference, quadratic, log, power (with γ ≤ 2), and exponential preferences
fit Proposition 5(1), and all above except for log and power fit Proposition 5(3).

Intuitively, Proposition 5 states it is sufficient for the report curve to be strongly
appealing if customizing action recommendations for extreme scenarios does not matter
too much to overall utility. Notice that ã′(K) is hump-shaped with both tails tending
to zero, implying the action recommendation is not sensitive to fundamentals near
the action boundaries. Hence, for λh(K) 1

6 ã′(K) 1
2 to be hump-shaped, λh(K) must

not explode too rapidly near extreme scenarios. That is, λh(K) can be hump-shaped,
meaning customizing extreme action recommendations is inconsequential. Or λh(K)
can explode but only at a rate controllable by ã′(K) such that λh(K) 1

6 ã′(K) 1
2 is still

hump-shaped, implying action customization for extreme scenarios is highly valued
with the excessive marginal utility, but still has limited newsworthiness implications
for the fundamentals since actions are not sensitive enough to fundamentals. Example
3 illustrates this intuition.

Example 3. Consider CRRA utilities h(a) = a1−γ

1−γ
(γ > 0 and γ ̸= 1) and h(a) = ln(a)

(γ = 1). The relative risk aversion γ captures the preference’s curvatures.
Fig. 5 shows λh(K) 1

6 ã′(K) 1
2 and β′

∞(K) for various γ. The tails of λh(K) 1
6 behave

properly for γ ≤ 1 but explode for γ > 1. When γ < 2, ã′(K) 1
2 prevails despite the

exploding tails of λh(K) 1
6 , and the combined λh(K) 1

6 ã′(K) 1
2 fits Proposition 5(1),

implying the strongly appealing property. When γ > 2, however, λh(K) 1
6 prevails and

λh(K) 1
6 ã′(K) 1

2 is U-shaped, fitting Proposition 5(1*). Take β′
∞(K) as λF (K) scaled

by λh(K) 1
6 ã′(K) 1

2 . Because λh(K) 1
6 ã′(K) 1

2 is symmetric around K1/2 and is bigger for
fundamentals more distant from K1/2, it scales up λF (K) opposite to K1/2 more and
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eventually causes the capacity allocation to focus on confirmative K values, leading
to an interesting alarmist bias for high γ values.

Ultimately, the bias type depends on Eq. (7), which can be rewritten as

d

da
ln h′(a) + d

da
ln h′(1 − a) − 2 d

da
ln
(

d

da
ln h′(a)

h′(1 − a)

)
≥ (≤) 0.

The first two terms are the elasticities for conditional marginal utilities, a certain type
of marginal utility level sensitivity. And the third term is twice the elasticity of the
elasticity of the conditional marginal utility ratio, a certain type of marginal utility
ratio sensitivity. For a small a, under most preferences, the marginal utility level
“sensitivity” dominates the marginal utility ratio “sensitivity”, leading to the strongly
appealing property, whereas under CRRA utility with γ > 2, it is the opposite which
causes the strongly alarmist property.

Figure 5: Illustration of Example 3 with Appealing versus Alarmist Biases
This figure is plotted under the following parameter values: µ = 1, σ = 1, πu1/(1 − π)u0 = 5, π = 2/3.
The value of normalized λh(K) 1

6 ã′(K) 1
2 at −σ2 ln(πu1/(1 − π)u0)/2µ is set to 1. The curves in blue,

red, yellow, green, and purple are with γ = 0.5, 1, 2, 5, 10.

Sensationalism. Sensationalism can be described by the sender dumping two vast
regions of tail scenarios into two small bins of extreme reports, or rigorously by the
small slopes of the report curve when K tends to infinities. Under Assumption 4(ii)
and with integrability in Theorem 2, sensationalism is predicted to be inevitable.

Essentially, the source of sensationalism is the structural assumption that N greatly
exceeds n on their path to infinities. This assumption also determines the proper
scaling of fundamentals and reports for the asymptotics. It captures the reality in
many situations that the underlying information is complex in nature and rich in
details, far beyond the power of an information intermediary to present no matter
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how much nuanced she can make the content.
Of the three factors in Theorem 2, ã′(K) 1

2 and λF (K) 1
6 work for sensationalism

while λh(K) 1
6 may work for or against it, depending on the utility’s tail behavior.

3.4 The Contextual Effects

Report Distribution. The observable data include the report and may not include
latent K. Under Assumption 4(ii), the conditional distribution of the report ρ is

Pr(ρ = 0|θ) = Φ
(

K
¯

−µθ

σ

)
if ρ = 0;

ρ|θ ∼ Φ
(

β−1
∞ (ρ)−µθ

σ

)
if ρ ∈ (0, 1);

Pr(ρ = 1|θ) = 1 − Φ
(

K̄−µθ

σ

)
if ρ = 1,

(8)

and its unconditional distribution is a mixture with mixing probability π.
I discuss contextual effects on the report curve and distribution under Assump-

tion 4(ii), in which case λH(K) only depends on K via ã(K), or equivalently 2µ
σ2 K.

Definition 2 compares the degree of audience appealing.

Definition 2. β(1)
∞ (K) “leans more positively” than β(2)

∞ (K) if β(2)
∞ (K) has first-order

stochastic dominance (FOSD) over β(1)
∞ (K).

Relative payoff relevance u1/u0. Obviously, u1 and u0 are not separately iden-
tifiable in report data. The term u1/u0 affects the report distribution through the
report curve. Suppose u

(1)
1 /u

(1)
0 > u

(2)
1 /u

(2)
0 with corresponding report curves β(1)

∞ (K)
and β(2)

∞ (K). Then for cosine difference, quadratic, log, and power (γ < 2) utilities,
the “likelihood ratio” β(1)′

∞ (K)/β(2)′
∞ (K) strictly decreases, implying β(2)

∞ (K) has FOSD
over β(1)

∞ (K) and thus β(1)
∞ (K) leans more positively. Trivially for exponential utility,

β(1)
∞ (K) leans more positively. For power utility with γ > 2, β(1)′

∞ (K)/β(2)′
∞ (K) strictly

increases and hence β(1)
∞ (K) leans less positively. In usual situations, higher payoff

relevance of a state leads to the report policy leaning toward that state more.
The conditional and unconditional report distribution for u

(1)
1 /u

(1)
0 , when β(1)

∞ (K)
leans more positively, has FOSD over the corresponding report distribution for u

(2)
1 /u

(2)
0 .

That is because we have β(1)
∞ (K) ≥ β(2)

∞ (K) by the FOSD order of report curves,
implying β(1)−1

∞ (ρ) ≤ β(2)−1
∞ (ρ) and K

¯
(1) ≤ K

¯
(2) in Eq. (8).
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Belief π. The belief has two effects on the report distribution. First, it affects the
report curve in the same way as u1/u0. Second, it is the mixing probability. The
second effect implies π and u1/u0 are separately identifiable in report data.

If for π(1) > π(2), β(1)
∞ (K) leans more positively than β(2)

∞ (K), then the conditional
report distributions under π(1) has FOSD over under π(2), following an analogous
reasoning for u1/u0. The unconditional report distribution under π(1) also has FOSD
over under π(2), because besides higher conditional distributions, more weight is given
to the higher θ = 1 conditional distribution in the mixture.

Informativeness µ/σ. The identifiable parameter in report data for the information
structure is µ/σ. Parameters µ and σ are not separately identifiable. To see this,
suppose µ(2) = Cµ(1) and σ(2) = Cσ(1). Then K in setting (1) is the identical
fundamental to CK in (2). That is, (i) 2µ

σ2 K and hence the reports at K and CK are
the same, and (ii) the conditional cumulative probabilities are the same. Therefore,
the conditional and unconditional report distributions in (1) and (2) are the same.
Essentially, relabeling K with affine transformations does not change the problem;
hence, what matters is the problem for the standardized fundamental K/µ. For the
same reason, if we want to back out the fundamental K = β−1

∞ (ρ) for some observed
ρ ∈ (0, 1), we must first assume either µ or σ without loss of generality.

Informativeness contributes to sensationalism. For instance, let h satisfy Proposi-
tion 5(1) and let σ tends to zero, fixing µ. Both hump-shaped λH(K) 1

6 and ã′(K) 1
2

horizontally stretch toward zero and obviously, the limiting β∞(K) is 0 for negative
K and 1 for nonnegative K. This extremely sensationalist policy captures the vital
importance of separating middle fundamentals when the information is very clear as
the action and utility sensitivities are wildly high. Consequently, the conditional report
distributions will tend to a mass of one at 0 and 1 respectively, and the unconditional
distribution is highly dispersed as their mix.

Preference. Proposition 5 and Example 3 outline the effect of preference curvatures:
Under different utilities, the shape of λH(K) may change, leading to different bias
implications for other contextual parameters.
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4 Implications: Intuition and Methodology

This model brings new insights in two ways. First, it proposes a novel perspective to
understanding content bias, an important topic in business, politics, and everyday life,
with a new and common information selection mechanism.

Second, it micro-founds content analysis. In the literature, content analysis often
follows a reduced-form or a data-mining approach. It is difficult to see beyond the
literal meaning of content data and understand them in the original environment in
which they were produced. It is also challenging to interpret the methodology and the
results rigorously. This paper fills in by proposing a tractable content model.

As a structural content model, it has three major advantages. First, the model is
not a black box, but is founded on the common editorial practice. Second, it treats the
literal meaning and the underlying true meaning separately while linking them with
the context. This allows us, the third-party observers, to not take content literally but
put ourselves in the shoes of the people in that economic environment at the time,
thinking how they see the content. Third, contextual effects are modeled clearly.

This model is particularly fitting to study sentiment, as is discussed subsequently.

The Scope of Applicability This model applies to diverse forms of content with
the following characteristics. (1) The content facilitates decision-making by presenting
information and evaluating two competing hypotheses; (2) there is reason to believe
the content length is not very flexible due to requirements or conventions, necessitating
information selection; and (3) the primary focus of the analysis is not placed on the
heterogeneity within the target audience or agency issues.

Media content is an obvious example. Other examples may include briefings for a
busy decision-maker, consultancy reports, filings publishing information, and essays
with selectively presented evidence for argumentation.

4.1 Media Bias

Media outlets often form narratives that skew reality. Demand-side theories (e.g., Suen
(2004), Mullainathan and Shleifer (2005), Gentzkow and Shapiro (2006)) attribute
this to the incentive to satisfy the audience, while they all require some form of belief
or preference discrepancy among relevant parties.
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This model proposes a novel demand-side framework based on information selection
and independent of the discrepancy perspective. Media narratives, which are formed
of the often biased editorial selection of covered events, emerge because the media
outlets know their target audience’s preferences and beliefs and are simply trying to
convey the most useful information under the newspaper pages, broadcast time, or
website front page size. While the media firms appear to feed their audience with more
information believed or liked and sensationalize any content, such slants, biases, and
cherrypicking are only manifestations of the most efficient communication protocol
that both the media and the audience tacitly agree on.

For instance, θ may represent conflicting alternative facts claimed by the left and
right-wing politicians. Households must figure out the fact to choose the right saving
plans or policies to support, often with the help of news outlets that target an audience
with a political tendency. If a household has confidence in the rightist view or more
stakes on the situation that the rightist version of reality is true, then it optimally
matches a right-wing media that positions its preference and belief to such audience’s.
The media will efficiently communicate by apparently filling the newspaper or air
time with more evidence supporting the rightist view and to make any narrative more
extreme. Same with the leftist.

Should we worry about slants? The model says no, but surely it assumes full
rationality that may be too strong. Also, it is not the only bias channel and does not
consider sociological and cultural aspects. Nonetheless, it provides a perspective why
slants may be reasonable.

4.2 Empirical Implications

Data and Model Preparations In practice, the reports are usually alternative
data and need to be formatted into the quantified form in the model. This process is
tokenization, which refers to dividing the full content into basic tokens, such as events,
pieces of evidence, or sentences and words that correspond to the reported elements
in the model. Each token should support one competing hypothesis over the other. In
doing so, we obtain the content measure k/n, i.e., ρ.

One feature of such tokenization is the irrelevance of the token order. The model
assumes the location of covered events or pieces of evidence carries no information, as
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long as they are placed in the same newspaper cover page or main body of an essay.
This assumption becomes strong if we perform linguistic analysis within a text and
take sentences or words as signals. Even so, this assumption is not stronger than what
is often used in the popular bag-of-words approach to vectorize a text. Compared to
the relevant empirical literature, the proposed method is an improvement.

Results like Theorem 2 and Eq. (8) can prepare the structural model if we set up
a problem. Example 4 is for demonstration.

Example 4. Consider an investor with CRRA utility u(w) = 1
1−γ

w1−γ on his portfolio
worth w allocating one dollar between two categories of assets: The A category with
gross return RA,1 upon booms and RA,0 upon busts, and the B category with RB,1

upon booms and RB,0 upon busts. To avoid a dominant asset, let RA,1 > RB,1 and
RA,0 < RB,0. These returns are calibratable parameters from data, for instance, with
mean returns for universes of assets that pay off more in booms or busts. The investor
shares the market belief for booms π. A financial newspaper targets such investors.
To match setups, set

h(a) = 1
1 − γ

(a + C)1−γ , u1 = (RA,1 − RB,1)1−γ, and u0 = (RB,0 − RA,0)1−γ,

where
C = 1

2

(
RB,1

RA,1 − RB,1
+ RB,0

RB,0 − RA,0
− 1

)
≥ 0.

Hence, K
¯

= −γσ2

2µ
ln 1+C

C
≥ −∞ and K̄ = γσ2

2µ
ln 1+C

C
≤ ∞. By Theorem 2,

β′
∞(K) ∝ exp

(
− K2

6σ2

)(
(πu1)

1
γ exp

(
µ

γσ2 K

)
+ ((1 − π)u0)

1
γ exp

(
− µ

γσ2 K

)) γ−2
3

,

the truncated distribution of the power case in Table 1 on (K
¯

, K̄). That gives β∞(K),
β−1

∞ (K), and the structural model for the report distribution.

Identification with Reports With report data only, the identifiable parameters
include π, u1/u0, µ/σ, and the identifiable parameter that governs the shape of the
utility given the utility form. Assuming µ or σ, we can extract the standardized
fundamental for a given report value. If given the joint data of the report and some
proxies of other parameters or of the fundamental information, then we may have
theoretical access to not just the unconditional marginal report distribution but the
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joint distribution. In that case, results like Theorem 2 and Eq. (8) help build a
parametric model accounting for changes in the context.

Sentiment Analysis and Model (Mis)specification This model is particularly
relevant for sentiment analysis. Conventional sentiment research proceeds in two steps.
In the first step, it constructs a textual frequency measure such as the ratio of negative
words in all words, or of positive stories in all stories. That measure is often named
sentiment, pessimism, tones, attitude, or tendencies, and believed to proxy variables
like beliefs, preferences, or the fundamentals. In the second step, it uses the measure
in regressions or data mining. Its issue is the lack of clarity in what information is
embedded in such a measure and how, which compromises the proper interpretation
and use of sentiment. This paper speaks to this issue with its report definition k/n

matching the sentiment construct.
The content model provides an empirical model specification. It predicts the

sentiment measure is a nonlinear mix of fundamentals, preference, and beliefs, following
Theorem 2 or its discrete version. It is proposed that an intermediate step be inserted
to the two-step process: That is, to use the model to distill the specific information
needed for analysis from this mix. For instance, if a researcher wants to study textual-
based K, then after assuming µ without loss of generality, she should use the report
data possibly joint with other data and estimate a full model, which predicts K for
subsequent analysis or possibly includes subsequent analysis in the model as well.

Missing the intermediate step predicts misspecification. For instance, if a researcher
confuses k/n with the fundamental and correlates it with an economic variable,
obtaining statistical significance, it is uncertain whether the significance comes from
the fundamental or from the fact that k/n exaggerates the fundamental, making it
easier to obtain significance or possibly amplifying the effect. Or from the fact that
k/n includes bias towards market belief or preference, which is what actually correlates
with the economic variable. The model can further evaluate the severity of potential
misspecification errors quantitatively.

Textual frequencies evaluating two competing hypothesis are constructs similar to
the sentiment and can also be studied with the same approach.

33



5 Beyond Content: An Analysis of Ratings Data

The model can further study bias in other data forms, such as a product’s star ratings.
Consider the problem of a consumer (she) who rates her customer experience of a

product on a scale of five stars (k = 0, ..., 4) for a later shopper (he). The product’s
type θ is good (1) or bad (0). The customer experience K is a random variable with its
conditional distributions on θ satisfying the monotone likelihood ratio property. The
later shopper browses the rating and decides on a, which stands for the probability or
the amount of purchase. Suppose everyone aligns in preferences and beliefs.

While the star rating is not a compilation of reported elements, the problem shares
a similar information compression structure and can be solved by a slight twist of the
model. The customer experience K is much more elaborate than the report k and
should be represented by more than five equidistant integers or even continuous real
numbers. Like in the baseline model, I start from simplicity and let K be integers.

Importantly, the proofs of Proposition 1, Proposition 2 and Proposition 3 do not
depend on the specific distributions of si or even K, but only rests on the strictly
monotone likelihood ratio property for K|θ. The information structure as the rating
strategy is a pure strategy, a surjection, and characterized by cutoffs. To find the
optimal rating-generating information structure, we can trim the equilibria with self-
consistency, which is natural as customers give higher ratings for a better experience in
practice. Next, let K become dense and satisfy (i) or (ii) of Assumption 4. The report
curve is obtained by numerically solving Eq. (4), or approximated by Theorem 2.

This paper explains why the ratings we observe in practice often look skewed.
A product rated with many five and four stars but relatively fewer low stars may
reflect that customers expect its quality to be good or benefit more from purchasing a
good product than missing a bad one. In that case, they are keen on separating bad
experience scenarios with various low ratings while squeezing relatively fine experiences
in four and five stars. A dispersed ratings distribution may reflect high informativeness
of experience on quality.

The Model’s Essence The extension reveals the model’s essential mathematical
structure. The model has two equidistant grids: a fundamental grid with more
elements and a report grid. The problem is to find a mapping from the fundamental
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grid to the report grid as the information structure with the highest two grid values
joined and the lowest as well. That mapping must involve some monotone pooling,
and the problem is what pooling is optimal in maximizing the expected utility for
a parsimonious decision problem. Such pooling creates curvature for the mapping,
which manifests as various interesting phenomena in practice.

Similar extensions include, for example, studying exam scores on an equidistant
score table that reflect the exam-takers’ skill, supposing the score serves a decision.

6 Concluding Remarks

This paper identifies information selection under the physical communication capacity
as a reason for content bias such as appealing to the audience and sensationalism,
and provides asymptotic characterizations. The bias stems from the sender optimally
compressing fundamental information based on its newsworthiness. It is apparent and
improves welfare.

The modeled content generation channel is independent of any preference or payoff
discrepancies. If such discrepancies are the primary concern, other persuasion-related
channels may also be in place. The information structure may involve mixed strategies
and the two criteria may constrain optimization and become at odds with each other.
This paper’s channel remains relevant if information selection is also a concern.

The model can be applied widely to settings involving information selection. In
these applications, the model separates the content’s literal meaning and inferred
fundamental meaning, while connecting the two in a tractable and smooth function
involving contextual economic parameters. This paper lists several examples: The
model brings a new perspective on media slants. It can lay an economic foundation for
certain content analysis involving textual frequencies, such as sentiment analysis. Its
variation can explain ratings data. It has empirical potential in interpreting content
data in context and parameterizing a model of such data for estimation that is relieved
from misspecification errors.
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Appendix A. Propositions 1, 2, and 3

Denote pK := Pr(K|θ = 1), qK := Pr(K|θ = 0), and the posterior beliefs π′
k := Pr(θ = 1|k) =

π Pr(k|θ = 1)/ Pr(k). Hence the ex ante utility

U =
n∑

k=0
Pr(k) {π′

ku1h(a∗(k)) + (1 − π′
k)u0h(1 − a∗(k))}

=
n∑

k=0
{π Pr(k|θ = 1)u1h(a∗(k)) + (1 − π) Pr(k|θ = 0)u0h(1 − a∗(k))} :=

n∑
k=0

Uk,

where a∗(k) is arg maxa π′
ku1h(a) + (1 − π′

k)u0h(1 − a) if ∑K σKk > 0 for that k and is
any value otherwise. The domain of U is [0, 1](N+1)×(n+1) for {σKk}K=0,...,N ;k=0,...,n. The
utility is continuous on a compact set, so it has a maximum.

Proof of Propositions 1, 2. Prove Prop 1’ → 2 → 1 in turn, where Prop 1’ is a
weaker version of Prop 1:

Proposition 1’. Under Assumption 1, there exists a pure strategy equilibrium.

Proof. (Proposition 1’) For σKk,

∂U

∂σKk
= ∂Uk

∂σKk
= ∂Uk({σKk}K=0,...,N , a∗(k))

∂σKk
+ ∂Uk({σKk}K=0,...,N , a∗(k))

∂a∗(k)
∂a∗(k)
∂σKk

= ∂Uk({σKk}K=0,...,N , a∗(k))
∂σKk

(Optimality of a∗(k))

= πu1pKh(a∗(k)) + (1 − π)u0qKh(1 − a∗(k)). (A.1)

The optimality of a∗(k) for such k that ∑K σKk > 0 is characterized by the F.O.C.:
0 = π′

ku1h′(a) − (1 − π′
k)u0h′(1 − a). By the Implicit Function Theorem,

∂a∗(k)
∂σKk

= − πu1pKh′(a∗(k)) − (1 − π)u0qKh′(1 − a∗(k))
πu1(∑N

K′=1 pK′σK′k)h′′(a∗(k)) + (1 − π)u0(∑N
K′=1 qK′σK′k)h′′(1 − a∗(k))

.
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Hence,

∂2U

∂σ2
Kk

= (πu1pKh′(a∗(k)) − (1 − π)u0qKh′(1 − a∗(k)))∂a∗(k)
∂σKk

(A.2)

= − (πu1pKh′(a∗(k)) − (1 − π)u0qKh′(1 − a∗(k)))2

πu1(∑N
K′=1 pK′σK′k)h′′(a∗(k)) + (1 − π)u0(∑N

K′=1 qK′σK′k)h′′(1 − a∗(k))

and ≥ 0 by h′′(·) < 0. Also,
∂2U

∂σKk1∂σKk2

= 0, (A.3)

implying that ∂U/∂σKk does not depend on σKk′ for k′ ̸= k.
Suppose σ∗

Kk1
∈ (0, 1) is in an optimal information structure. Then there must exist

σ∗
Kk2

∈ (0, 1). Both ∑
K σ∗

Kk1
> 0 and ∑

K σ∗
Kk2

> 0 hold and hence Eq. (A.2) and
Eq. (A.3) hold. Write U as U(σKk1 , σKk2). Discuss the following scenarios:

(i). If ∂U
∂σKk1

|σ∗
Kk1

̸= ∂U
∂σKk2

|σ∗
Kk2

, w.l.o.g. ∂U
∂σKk1

|σ∗
Kk1

> ∂U
∂σKk2

|σ∗
Kk2

, then for a small ε,
σ∗∗

Kk1
= σ∗

Kk1
+ε and σ∗∗

Kk2
= σ∗

Kk2
−ε will improve U . That is because ∂U

∂σKk1
is continuous

in σKk1 and so is ∂U
∂σKk2

in σKk2 , and hence ∃ε > 0 such that ∂U
∂σKk1

|σ∗
Kk1

+ε′ > ∂U
∂σKk2

|σ∗
Kk2

−ε′ ,
∀ε′ ∈ (0, ε]; the increase in utility after changing to σ∗∗

Kk1
and σ∗∗

Kk2
is U(σ∗∗

Kk1
, σ∗∗

Kk2
) −

U(σ∗
Kk1

, σ∗
Kk2

) = U(σ∗∗
Kk1

, σ∗∗
Kk2

) − U(σ∗∗
Kk1

, σ∗
Kk2

) + U(σ∗∗
Kk1

, σ∗
Kk2

) − U(σ∗
Kk1

, σ∗
Kk2

), and
by Eq. (A.3) is

∫ ε
0

∂U
∂σKk1

|σ∗
Kk1

+ε′dε′ −
∫ ε

0
∂U

∂σKk2
|σ∗

Kk2
−ε′′dε′′ > 0. It is contradictory to

optimality;
(ii). If ∂U

∂σKk1
|σ∗

Kk1
= ∂U

∂σKk2
|σ∗

Kk2
and ∄δ > 0 s.t. both ∂2U

∂σ2
Kk1

= 0 on (σ∗
Kk1

− δ, σ∗
Kk1

+ δ)

and ∂2U
∂σ2

Kk2
= 0 on (σ∗

Kk2
− δ, σ∗

Kk2
+ δ), and w.l.o.g. assume ∂2U

∂σ2
Kk1

> 0 on (σ∗
Kk1

, σ∗
Kk1

+ δ0],
then σ∗∗

Kk1
= σ∗

Kk1
+ δ0 and σ∗∗

Kk2
= σ∗

Kk2
− δ0 will improve U . Here is the reason:

The utility increase is U(σ∗∗
Kk1

, σ∗∗
Kk2

) − U(σ∗
Kk1

, σ∗
Kk2

) = U(σ∗∗
Kk1

, σ∗∗
Kk2

) − U(σ∗∗
Kk1

, σ∗
Kk2

) +
U(σ∗∗

Kk1
, σ∗

Kk2
) − U(σ∗

Kk1
, σ∗

Kk2
), and by Eq. (A.3) is U(σ∗

Kk1
, σ∗∗

Kk2
) − U(σ∗

Kk1
, σ∗

Kk2
) +

U(σ∗∗
Kk1

, σ∗
Kk2

)−U(σ∗
Kk1

, σ∗
Kk2

). Define a continuous function f(x) := U(σ∗
Kk1

, σ∗
Kk2

+x) if
x ∈ [−δ0, 0] and := U(σ∗

Kk1
+x, σ∗

Kk2
) if x ∈ (0, δ0]. f(x) is convex on [−δ0, δ0] and strictly

convex on (0, δ0]. The utility increase is f(δ0) + f(−δ0) − 2f(0), positive by Jensen’s
Inequality. It is contradictory to optimality;

(iii). If ∂U
∂σKk1

|σ∗
Kk1

= ∂U
∂σKk2

|σ∗
Kk2

and ∃δ > 0 s.t. both ∂2U
∂σ2

Kk1
= 0 on (σ∗

Kk1
− δ, σ∗

Kk1
+ δ)

and ∂2U
∂σ2

Kk2
= 0 on (σ∗

Kk2
− δ, σ∗

Kk2
+ δ), one of the two following cases will occur.

(iii-a). If ∂2U
∂σ2

Kk1
> 0 or ∂2U

∂σ2
Kk2

> 0 somewhere on (0, σ∗
Kk1

+ σ∗
Kk2

), and w.l.o.g. assume
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for some constant σ0 ∈ (σ∗
Kk1

, σ∗
Kk1

+ σ∗
Kk2

), ∂2U
∂σ2

Kk1
> 0 when σKk1 ∈ (σ0, σ∗

Kk1
+ σ∗

Kk2
),

∂2U
∂σ2

Kk1
= 0 when σKk1 ∈ (σ∗

Kk1
, σ0], and ∂2U

∂σ2
Kk2

= 0 when σKk2 ∈ (σ∗
Kk2

−(σ0 −σ∗
Kk1

), σ∗
Kk2

),
then let σ0

Kk1
= σ0 and σ0

Kk2
= σ∗

Kk2
− (σ0 − σ∗

Kk1
). We get a new information structure

falling under scenario (ii) with the same utility. Resort to the reasoning of (ii) by letting
σ0

Kk1
and σ0

Kk2
be the new σ∗

Kk1
and σ∗

Kk2
to find a contradiction to optimality;

(iii-b). If ∂2U
∂σ2

Kk1
= 0 and ∂2U

∂σ2
Kk2

= 0 for σKk1 , σKk2 ∈ (0, σ∗
Kk1

+ σ∗
Kk2

), let σ∗∗
Kk1

=
σ∗

Kk1
+ σ∗

Kk2
and σ∗∗

Kk2
= 0.

(iii-b-1). If σ∗
Kk1

+ σ∗
Kk2

= 1, then the new strategy has the same utility and does not
involve mixing for K. If no other K ′ involves mixing, then we have found a pure strategy
that delivers the same utility as the optimal mixed strategy. If some other K ′ involves
mixing, then let K ′ be the new K and iterate the discussion of (i)(ii)(iii);

(iii-b-2). If σKk∗
1

+ σKk∗
2

< 1, then ∃k3 s.t. σ∗
Kk3

∈ (0, 1). Let k3 be the new k2 and
iterate the discussion of (i)(ii)(iii).

Hence, among all possible scenarios, the existence of mixing is only plausible under
(iii-b-1). A mixed strategy exists in equilibrium only when it delivers the same utility as
a pure strategy. Therefore, a pure strategy equilibrium always exists.

Lemma 1. Under Assumption 1 and with pK/qK strictly increasing in K, The equilibrium
involves either a pure strategy, or a mixed strategy that yields the same utility as a pure
strategy in which ∑K σKk = 0 for some k.

Proof. (Lemma 1) From the proof of Proposition 1’, the scenario for mixing to possibly
occur in equilibrium is (iii-b-1) when σ∗

Kk1
+ σ∗

Kk2
= 1. In that scenario, ∂U/∂σKk1 is a

constant, implying that a∗(k1) is constant with respect to σKk1 by Eq. (A.1). Hence, by
the F.O.C., σKk1 does not affect π′

k1
/(1 − π′

k1
). Since pK/qK differ across K, it can be

inferred that σK′k1 = 0, ∀K ′ ̸= K. The same argument goes for k2. Namely, K is the
only fundamental value that maps to k1 or k2. The utility-equivalent pure strategy must
involve either ∑K σ∗∗

Kk1
= 0 or ∑K σ∗∗

Kk2
= 0, i.e., some k ends up unused.

Proof. (Proposition 2) By Proposition 1’ and Lemma 1, I only need to consider pure
strategy equilibria. Prove by contradiction. Suppose in a pure strategy equilibrium,∑

K σKk1 = 0. Then N + 1 fundamentals are mapped to at most (n + 1) − 1 = n ≤ N

reports, so there exist a report associated with m ≥ 2 fundamentals. Let this set of
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fundamentals be {K(1), ..., K(m)} and their report be k2. The contribution to utility by
k2 is Uk2 and the optimal action for k2 is a∗(k2). Consider an alternative pure strategy
with K(1) mapped to k1, {K(2), ..., K(m)} mapped to k2, and the rest of the strategy the
same as the old strategy. The contributions to utility by k1 and k2 are denoted as U ′

k1

and U ′
k2

, and the optimal actions as a′∗(k1) and a′∗(k2). Therefore,

Uk2 = Pr
(
K ∈ {K(1), ..., K(m)}

)
E[u(a∗(k2); θ)|K ∈ {K(1), ..., K(m)}]

= Pr
(
K ∈ {K(1), ..., K(m)}

)
E[E[u(a∗(k2); θ)|1̃K=K(1) ]|K ∈ {K(1), ..., K(m)}]

≤ Pr
(
K ∈ {K(1), ..., K(m)}

)
E[E[max

a
u(a; θ)|1̃K=K(1) ]|K ∈ {K(1), ..., K(m)}]

= Pr
(
K = K(1)

)
E[u(a′∗(k1); θ)|K = K(1); K ∈ {K(1), ..., K(m)}]+

... + Pr
(
K ∈ {K(2), ..., K(m)}

)
E[u(a′∗(k2); θ)|K ̸= K(1), K ∈ {K(1), ..., K(m)}]

= U ′
k1 + U ′

k2

where 1̃K=K(1) is a random variable that equals 1 when K = K(1) and 0 otherwise. The
inequality is strict because a∗(k2), a′∗(k1) and a′∗(k2) cannot be equal by strictly monotone
pK/qK . It is contradictory to optimality.

Proof. (Proposition 1) By Proposition 2, the mixed strategy possibility in Lemma 1 is
ruled out. The equilibrium only involves pure strategies.

Proof of Proposition 3. Prove Proposition 3(i), and 3(ii) will naturally follow. For
fundamental K, denote xK = πu1pK and yK = (1 − π)u0qK . Each fundamental can be
fully characterized by (xK , yK). Let ηK := yK/xK = π

1−π
u1
u0

Λ(K).

Lemma 2. Let Assumption 1 hold, the fundamental space be {K0, ..., KN} with unequal
ηK , the optimal partition be {B∗

k}n
k=0, and B∗

n consist of m ≥ 2 fundamentals (by Prop 2,
m ≤ N − n + 1). Define fundamental v by xv = ∑

K∈Bn
xK and yv = ∑

K∈Bn
yK . For the

alternative problem with the fundamental space {K0, ..., KN} ∪ {v}\B∗
n and n + 1 reports,

the optimal partition is {B∗
k}n−1

k=0 ∪ {{v}}.

Proof. (Lemma 2) Under the partition {Bk}n
k=0, the utility is

U =
n∑

k=0


 ∑

K∈Bk

xK

h(a∗(k)) +

 ∑
K∈Bk

yK

h(1 − a∗(k))

 ,
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where a∗(k) is determined by fundamental probabilities through ∑K∈Bk
xK/

∑
K∈Bk

yK .
Therefore, any utility delivered by a feasible partition of {K0, ..., KN} ∪ {v}\Bn can
be delivered by a feasible partition of {K0, ..., KN}, specifically by replacing v with all
elements of Bn in the partition set where v belongs among {K0, ..., KN} ∪ {v}\Bn .
Namely, the range of utility for partitioning {K0, ..., KN} ∪ {v}\Bn is a subset of the
range for partitioning {K0, ..., KN}. Therefore, if {B∗

k}n
k=0 is the optimal partition of

{K0, ..., KN}, then {B∗
k}n−1

k=0 ∪{{v}}, as a partition of {K0, ..., KN}∪{v}\B∗
n that delivers

the same utility, must be optimal.

Proof. (Proposition 3) Prove by induction. Let P (N, n) be the problem of choosing n

reported elements from N signals, and the goal is to show P (N, n) has the property that
its solution involves an ordered partition of the fundamental space. I proceed by first
showing the property for P (N, 1) by induction starting from P (2, 1) and P (3, 1), and
second showing it for P (N, n). W.l.o.g., let Λ(0) < Λ(1) < ... < Λ(K).
Step 1. Prove that the solution to P (N, 1) involves an ordered partition.
Step 1.1. Prove that the solution to P (2, 1) involves an ordered partition.

Prove by contradiction. Consider the following strategy: (i). The fundamentals that
map to k0 are (0, 1, 2) with probabilities (1 − s, 0, 1 − t) respectively; the optimal action
is a; and (ii). The fundamentals that map to k1 are (0, 1, 2) with probabilities (s, 1, t)
respectively; the optimal action is b. Thus

U = ((1 − s)x0 + (1 − t)x2)h(a) + ((1 − s)y0 + (1 − t)y2)h(1 − a) + ...

+ (sx0 + x1 + tx2)h(b) + (sy0 + y1 + ty2)h(1 − b).

Need to show s = t = 0 is a suboptimal strategy. By the Envelope Theorem,

∂U

∂s
= x0(h(b) − h(a)) + y0(h(1 − b) − h(1 − a)), (A.4)

∂U

∂t
= x2(h(b) − h(a)) + y2(h(1 − b) − h(1 − a)). (A.5)

Consider two scenarios:
(i). If a ̸= b at s = t = 0, then as long as one of the two partial derivatives is positive

at s = 0 or t = 0, and for instance say it is ∂U
∂s |s=0 > 0, the pure strategy at s = t = 0
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is strictly worse than a strategy with a small and positive s. That is a mixed strategy
and thus by Proposition 1 is suboptimal. Therefore, I only need to show Eq. (A.4) or
Eq. (A.5) is positive.

Show by contradiction. Suppose both Eq. (A.4) and Eq. (A.5) are nonpositive at
s = t = 0. Then on one hand, η1 = h′(b)

h′(1−b) by the optimality of b. On the other hand,
however, if a > b,

η2 ≤ h(a) − h(b)
h(1 − b) − h(1 − a) = (h(a) − h(b))/(a − b)

(h(1 − b) − h(1 − a))/((1 − b) − (1 − a))

by Eq. (A.5) and hence η1 < η2 ≤ (h(a)−h(b))/(a−b)
(h(1−b)−h(1−a))/((1−b)−(1−a)) . Since h(·) is strictly increas-

ing and concave, the numerator h(a)−h(b)
a−b < h′(b) and the denominator h(1−b)−h(1−a)

(1−b)−(1−a) >

h′(1 − b), hence η1 < h′(b)
h′(1−b) , a contradiction. And if a < b,

η0 ≥ h(a) − h(b)
h(1 − b) − h(1 − a) = (h(a) − h(b))/(a − b)

(h(1 − b) − h(1 − a))/((1 − b) − (1 − a))

by Eq. (A.4) and hence by analogous arguments, η1 > h′(b)
h′(1−b) , a contradiction.

(ii). If a = b at s = t = 0, then ∂U
∂s |s=0 = ∂U

∂t |t=0 = 0. The utility is U |s=t=0 = (x0+x1+
x2)h(a)+(y0 +y1 +y2)h(1−a). Consider the strategy at s = t = 1. By the optimality of a

and b, y0+y2
x0+x2

= h′(a)
h′(1−a) = h′(b)

h′(1−b) = y1
x1

, and hence h′(a)
h′(1−a) = h′(b)

h′(1−b) = y0+y1+y2
x0+x1+x2

. Therefore,
for s = t = 1, the optimal action is also a. The utility U |s=t=1 = U |s=t=0. However, the
strategy at s = t = 1 does not use both reports and thus is suboptimal by Proposition 2.
Hence the strategy at s = t = 0 is also suboptimal. Q.E.D. for Step 1.1.
Step 1.2. Prove that the solution to P (3, 1) involves an ordered partition.

Prove by contradiction. Possible non-ordered partitions {Bk}1
k=0 are {{1}, {0, 2, 3}},

{{2}, {0, 1, 3}}, {{0, 3}, {1, 2}} and {{0, 2}, {1, 3}}. I discuss why they are suboptimal:
(i). For {{1}, {0, 2, 3}} and {{2} , {0, 1, 3}}: Suppose w.l.o.g. the optimal partition

is {{1} , {0, 2, 3}}. Consider another problem with fundamentals {0, 1, v}, where v is
defined by xv = x2 + x3 and yv = y2 + y3. By Lemma 2, the optimal partition must be
{{1}, {0, v}}. However, the problem is P (2, 1), and since η0 < η1 < ηv, by Step 1.1’s result,
{{1}, {0, v}} cannot be optimal because it is not a ordered partition; a contradiction.

(ii). For {{0, 3}, {1, 2}}: Suppose it is optimal. Consider another problem with
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fundamentals {0, v, 3} where v is defined by xv = x1 + x2 and yv = y1 + y2. By Lemma 2,
the optimal partition must be {{v}, {0, 3}}. However, the problem is a P (2, 1), and since
η0 < ηv < η3, by Step 1.1’s result, {{v}, {0, 3}} cannot be optimal because it is not an
ordered partition; a contradiction.

(iii). For {{0, 2}, {1, 3}}: Suppose it is optimal. Consider two scenarios.
(iii-a). If a > b, then consider the following strategy: (1). the fundamentals that map

to k0 are (0, 1, 2, 3) with probabilities (1, s, 1 − t, 0) respectively; the optimal action is a;
and (2). the fundamentals that map to k1 are (0, 1, 2, 3) with probabilities (0, 1 − s, t, 1)
respectively; the optimal action is b. Thus,

U = (x0 + sx1 + (1 − t)x2)h(a) + (y0 + sy1 + (1 − t)y2)h(1 − a) + ...

+ ((1 − s)x1 + tx2 + x3)h(b) + ((1 − s)y1 + ty2 + y3)h(1 − b).

Need to show s = t = 0 is a suboptimal strategy. By the Envelope Theorem,

∂U

∂s
= x1(h(a) − h(b)) + y1(h(1 − a) − h(1 − b)),

∂U

∂t
= −x2(h(a) − h(b)) − y2(h(1 − a) − h(1 − b)).

Analogous to the argument in Step 1.1, I only need to show one of the two partial derivatives
is positive at s = 0 or t = 0. Suppose both are nonpositive, then η2 ≤ h(a)−h(b)

h(1−b)−h(1−a) ≤ η1,
contradictory to the assumption that η2 > η1.

(iii-b). If a < b, then consider the following strategy: (1). the fundamentals that map
to k0 are (0, 1, 2, 3) with probabilities (1 − t, 0, 1, s) respectively; the optimal action is a;
and (2). the fundamentals that map to k1 are (0, 1, 2, 3) with probabilities (t, 1, 0, 1 − s)
respectively; the optimal action is b. Thus,

U = ((1 − t)x0 + x2 + sx3)h(a) + ((1 − t)y0 + y2 + sy3)h(1 − a) + ...

+ (tx0 + x1 + (1 − s)x3)h(b) + (ty0 + y1 + (1 − s)y3)h(1 − b).
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Need to show s = t = 0 is a suboptimal strategy. By the Envelope Theorem,

∂U

∂s
= x3(h(a) − h(b)) + y3(h(1 − a) − h(1 − b)),

∂U

∂t
= −x0(h(a) − h(b)) − y0(h(1 − a) − h(1 − b)).

Analogous to the argument in Step 1.1, I only need to show one of the two partial derivatives
is positive at s = 0 or t = 0. Suppose both are nonpositive, then η3 ≤ h(a)−h(b)

h(1−b)−h(1−a) ≤ η0,
contradictory to the assumption that η3 > η0.

(iii-c). If a = b, consider the same strategy as (iii-a). Then ∂U
∂s |s=0 = ∂U

∂t |t=0 = 0. The
utility is U |s=t=0 = (x0 + x1 + x2 + x3)h(a) + (y0 + y1 + y2 + y3)h(1 − a). By the optimality
of a and b, y0+y2

x0+x2
= h′(a)

h′(1−a) = h′(b)
h′(1−b) = y1+y3

x1+x3
, and hence h′(a)

h′(1−a) = h′(b)
h′(1−b) = y0+y1+y2+y3

x0+x1+x2+x3
.

Therefore, the alternative strategy with the bundling {{0, 1, 2, 3},∅} delivers the same
optimal actions as s = t = 0 and the same utility. However, the alternative strategy does
not use both reports and thus is suboptimal by Proposition 2. Hence, the strategy at
s = t = 0 is also suboptimal. Q.E.D. for Step 1.2.
Step 1.3. Given that the solution to P (N − 1, 1) involves an ordered partition, prove
that the solution of P (N, 1) involves an ordered partition (N ≥ 4).

Prove by contradiction. Suppose the optimal partition {B0, B1} for P (N, 1) is not an
ordered partition, discuss two cases:

(i). If there exist neighboring fundamentals i, i + 1 ∈ B0 (or B1, here pick B0 w.l.o.g.),
then let v be a fundamental and (xv, yv) = (xi + xi+1, yi + yi+1). Hence Λ(i) < Λ(v) <

Λ(i + 1). Consider the P (N − 1, 1) problem of grouping {0, 1, ..., i − 1, v, i + 2, ..., N}.
By the optimality of {B0, B1}, the solution has to be {B′

0, B′
1} by Lemma 2, with

B′
0 = B0 ∪ {v}\{i, i + 1} and B′

1 = B1. However, this is not a ordered partition; a
contradiction.

(ii). It there do not exist patterns in (i), i.e. B0 = {0, 2, 4, ...} and B1 = {1, 3, 5, ...},
then let v be a fundamental and (xv, yv) = (x0 + x2, y0 + y2). Hence Λ(v) < Λ(2).
Consider the P (N − 1, 1) problem of grouping {v, 1, 3, 4, ..., N}. By the optimality of
{B0, B1}, the solution has to be {B′

0, B′
1} by Lemma 2, with B′

0 = B0 ∪ {v}\{0, 2} and
B′

1 = B1. However, Λ(v) < Λ(3) < Λ(4) and therefore this is not an ordered partition; a
contradiction.
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By Steps 1.1, 1.2 and 1.3, P (N, 1) has ordered-partition solutions.
Step 2. Prove that the solution to P (N, n) involves an ordered partition.

The problem is to partition {0, 1, ..., N} into n + 1 sets and let the solution be
{B0, ..., Bn}. For any 0 ≤ i, j ≤ n (i ̸= j), get Bi = {Ki

1, Ki
2, ..., Ki

mi
} and Bj =

{Kj
1 , Kj

2 , ..., Kj
mj

} and consider the problem P (mi + mj , 1) with the fundamental space
{Ki

1, Ki
2, ..., Ki

mi
, Kj

1 , Kj
2 , ..., Kj

mj
}. By the assumed optimality of {B0, ..., Bn}, the solu-

tion has to be {Bi, Bj} to avoid contradiction. By the result of Step 1, it is an ordered
partition. Therefore, for any two partition sets in B0, ..., Bn, there is a cutoff with each
set of fundamentals on a different side. The only way possible is that {B0, ..., Bn} is an
ordered partition.

Appendix B. Theorem 2

Lemma 3. (Properties of ã(K)) Under Assumption 3 and Assumption 4(i),
(i) ã(K) is strictly increasing on (K

¯
, K̄).

(ii) For any n, a∗
0 < ã(K∗

1 ) < a∗
1 < ã(K∗

2 ) < ... < ã(K∗
n) < a∗

n.
(iii) κ∗(n) ⊂ (K

¯
, K̄) ⊂ (K

¯
(1), K̄(0)) for all n.

Proof. (i) ã(K) is determined by

fK|θ=1(K)
fK|θ=0(K) = (1 − π)u0h′(1 − a)

πu1h′(a) .

The LHS strictly increases in K by Assumption 4(i)(c). The RHS strictly increases in a

by Assumption 3. Hence, ã(K) is strictly increasing.
(ii) For a partition interval (K1, K2), its optimal action a∗ satisfies

Pr(K ∈ (K1, K2)|θ = 1)
Pr(K ∈ (K1, K2)|θ = 0) = (1 − π)u0h′(1 − a)

πu1h′(a) .

The RHS strictly increases in a. The LHS is in (fK|θ=1(K1)
fK|θ=0(K1) ,

fK|θ=1(K2)
fK|θ=0(K2)) by Assumption 4(i)(c).

Hence, ã(K1) < a∗ < ã(K2). Apply this result to all partition sets.
(iii) Optimal action a∗

0 for (−∞, K∗
1) satisfies a∗

0 > 0, and therefore ã(K∗
1) > 0, i.e.,

K∗
1 > K

¯
. Similarly for (K∗

n, +∞), a∗
n < 1 and therefore ã(K∗

n) < 1, i.e., K∗
n < K̄.

46



Lemma 4. (Cutoffs are dense in the limit) Under Assumption 3 and Assumption 4(i),
(i)

lim
n→∞

max
K∗

i ,K∗
i+1∈κ∗(n)

|K∗
i+1 − K∗

i | = 0,

and (ii)
lim

n→∞
K∗

1 = K
¯

, lim
n→∞

K∗
n = K̄.

Proof. (i) Prove by contradiction. Suppose ∃δ > 0 such that for a subsequence {nj},

max
K∗

i ,K∗
i+1∈κ∗(nj)

|K∗
i+1 − K∗

i | > δ.

With slight abuse of notation, denote the cutoffs that achieve the max for nj as K∗
i+1, K∗

i .
Then an alternative information structure with cutoffs κ∗(n) ∪ {(K∗

i+1 + K∗
i )/2} delivers a

higher utility than κ∗(n) by at least w, where w := minK′,K′+δ∈[K
¯

,K̄] Pr(K ∈ [K, K + δ]){
E
[
maxa∈[0,1] E[u(a; θ)|1K<K′+δ/2]|K ∈ [K ′, K ′ + δ]

]
−maxa∈[0,1] E [u(a; θ)|K ∈ [K ′, K ′ + δ]]

}
.

Because of Assumption 4(i)(c) on (K
¯

, K̄), the optimal actions on (K ′, K ′ + δ/2) and
(K ′ + δ/2, K ′ + δ) cannot coincide for any K ′ such that K ′, K ′ + δ ∈ (K

¯
, K̄). Hence,

w > 0. Here, w is a constant.
Meanwhile, let κ̂1(n1), κ̂2(n2) ⊂ [K

¯
, K̄] be two sets of cutoffs and κ̂1(n1) ⊂ κ̂2(n2).

They respectively deliver expected utility levels Û1 and Û2. Obviously, Û1 ≤ Û2. Also
note that Û2 ≤ M := h(1) max{u0, u1} < +∞ and Û1 ≥ m := mina∈[0,1] πu1h(a) + (1 −
π)u0h(1 − a) > −∞. Hence, Û2 − Û1 ≤ M − m. Here, M, m are constants.

For nj , let κ̂2(n2) be κ∗(nj) and κ̂1(n1) be {K∗
i ∈ κ∗(nj)|i is odd}. Then, Û2 − Û1 =∑

t=1,...,⌊
nj +1

2 ⌋ νt, where νt = Pr(B2t−2 ∪ B2t−1)×

{
E[ max

a∈[0,1]
E[u(a; θ)|1B2t−2 ]|B2t−2 ∪ B2t−1] − max

a∈[0,1]
E[u(a; θ)|B2t−2 ∪ B2t−1]

}

for t < ⌊nj+1
2 ⌋ and νt = Pr

(
∪

t≥2⌊
nj +1

2 ⌋Bt

)
×

{
E[ max

a∈[0,1]
E[u(a; θ)|1B2t−2 + 1B2t−2∪B2t−1 ]| ∪

t≥2⌊
nj +1

2 ⌋ Bt] − max
a∈[0,1]

E[u(a; θ)| ∪
t≥2⌊

nj +1
2 ⌋ Bt]

}

for t = ⌊nj+1
2 ⌋. Each νt ≥ 0 and, to avoid contradiction to the upper bound M − m,
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mint νt ≤ 2(M − m)/nj . As nj → ∞, 2(M − m)/nj → 0, and hence mint νt → 0.
Therefore, given w, there exists a large enough nj such that mint νt < w. Let this
min be achieved by t̃. Thus, the cutoffs κ∗(nj) ∪ {(K∗

i + K∗
i+1)/2}\{K∗

2t̃−1} pin down an
alternative information structure better than the cutoffs κ∗(nj) by at least w−mint νt > 0,
a contradiction.
(ii) Prove by contradiction. Suppose ∃M > K

¯
such that K∗

1 > M , ∀n. Then define K∗∗

as (inf{K∗
1 : n ≥ 1} + K

¯
)/2 if K

¯
> −∞ and inf{K∗

1 : n ≥ 1} − 1 if K
¯

= −∞. Then
an alternative information structure with cutoffs κ∗(n) ∪ {K∗∗} delivers a higher utility
by at least w > 0. Meanwhile, use the same construction of µt, it can be found that
κ∗(nj) ∪ {K∗∗}\{K∗

2t̃−1} is a better information structure, a contradiction. Analogous
reasoning applies to K∗

n → K̄.

Proof of Theorem 2.

Proof. (Theorem 2) Prove in three steps.
Step 1. Reformulating the Problem. Let

δn(a) := 1
n

∑
K′∈κ∗(n)

1{ã(K′)≤a}. (B.1)

Because ã(K) is strictly increasing on (K
¯

, K̄) and κ∗(n) ⊂ (K
¯

, K̄) for all n by Lemma 3,
βn(K) = δn(ã(K)). Therefore, to show βn(K) converges, it suffices to first show δn(a)
converges. By Lemma 4, it suffices to show that the function sequence

δ̂n(a) =


δn(ã(K∗

i )) + δn(a(K∗
i+1))−δn(ã(K∗

i ))
ã(K∗

i+1)−ã(K∗
i ) (ã(K) − ã(K∗

i )), if a ∈ [ã(K∗
i ), ã(K∗

i+1));
δn(ã(K∗

1 ))
ã(K∗

1 ) ã(K), if a ∈ (0, ã(K∗
1 ));

0, if a ≤ 0; 1, if a ≥ ã(K∗
n)

converges. Functions δ̂n(a) are absolutely continuous cumulative distribution functions.
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By Scheffé’s Lemma (see Theorem in Scheffé (1947)), it suffices to show its density

dn(a) =



δn(ã(K∗
i+1))−δn(ã(K∗

i ))
ã(K∗

i+1)−ã(K∗
i ) , if a ∈ [ã(K∗

i ), ã(K∗
i+1));

δn(ã(K∗
1 ))

ã(K∗
1 ) , if a < ã(K∗

1 );

0, otherwise

pointwise converges to some limiting density almost everywhere.
By Lemma 3, we can define K̃ : (0, 1) → (K

¯
, K̄) as the inverse function of ã(K) on

(K
¯

, K̄). To simplify notations, let g1(a) = F1(K̃(a)), g0(a) = F0(K̃(a)), t1(a) = h(a),
t0(a) = h(1 − a), Ii = ã(K∗

i+1) − ã(K∗
i ), and Ji = a∗

i − a∗
i−1. Then the F.O.C. for a∗

i is

g1(ã(K∗
i+1)) − g1(ã(K∗

i ))
g0(ã(K∗

i+1)) − g0(ã(K∗
i )) = g′

1(a∗
i )

g′
0(a∗

i ) , (B.2)

and for K∗
i is

t1(a∗
i ) − t1(a∗

i−1)
t0(a∗

i ) − t0(a∗
i−1) = t′

1(ã(K∗
i ))

t′
0(ã(K∗

i )) . (B.3)

In Eq. (B.2), Taylor-expand g1(ã(K∗
i+1)), g1(ã(K∗

i )), g0(ã(K∗
i+1)), and g0(ã(K∗

i )) at āi :=
(ã(K∗

i+1) + ã(K∗
i ))/2 to the fourth order and g′

1(a∗
i ) and g′

0(a∗
i ) at āi to the first order,

getting

a∗
i − āi = 1

24
g′′′

0 (āi)g′
1(āi) − g′′′

1 (āi)g′
0(āi)

g′
1(āi)g′′

0(āi) − g′
0(āi)g′′

1(āi)
I2

i + R1 + R2 + R3 + R4 + R5 + R6

g′
1(āi)g′′

0(āi) − g′
0(āi)g′′

1(āi)
(B.4)

:=Γ(āi)I2
i + Rema

i ,

where

R1 = C1(g′
0(āi)g′′′

1 (ad) − g′
1(āi)g′′′

0 (a′
d)) (a∗

i − āi)2

R2 = C2(g′′′
0 (āi)g′′

1(āi) − g′′′
1 (āi)g′′

0(āi)) I2
i (a∗

i − āi)

R3 = C3(g′′′
0 (āi)g′′′

1 (ad) − g′′′
1 (āi)g′′′

0 (a′
d)) I2(a∗

i − āi)2

R4 = C4((g(5)
0 (a′′

c ) − g
(5)
0 (a′′′

c ))g′
1(āi) − (g(5)

1 (ac) − g
(5)
1 (a′

c))g′
0(āi)) I4

i

R5 = C5((g(5)
0 (a′′

c ) − g
(5)
0 (a′′′

c ))g′′
1(āi) − (g(5)

1 (ac) − g
(5)
1 (a′

c))g′′
0(āi)) I4

i (a∗
i − āi)

R6 = C6((g(5)
0 (a′′

c ) − g
(5)
0 (a′′′

c ))g′′′
1 (ad) − (g(5)

1 (ac) − g
(5)
1 (a′

c))g′′′
0 (a′

d)) I4
i (a∗

i − āi)2.
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Here, ad and a′
d are between a∗

i and āi and are respectively in the Taylor remainders of
g′

1(a∗
i ) and g′

0(a∗
i ). Also, ac and a′′

c are between ã(K∗
i+1) and āi and are respectively in

the Taylor remainders of g1(ã(K∗
i+1)) and g0(ã(K∗

i+1)). a′
c and a′′′

c are between āi and
ã(K∗

i ) and are respectively in the Taylor remainders of g1(ã(K∗
i )) and g0(ã(K∗

i )). With
slight abuse of notations, subscripts i for all aforementioned notations are omitted. C1,
..., C6 are constants. Differentiation is possible by smoothness in Assumption 4 and
Lemma 3. The denominator g′

1(āi)g′′
0(āi) − g′

0(āi)g′′
1(āi) > 0 when āi ∈ (0, 1) because of

(F ′
1(K)/F ′

0(K))′ > 0 in Assumption 4(i) and K̃ ′(a) > 0 in Lemma 3.
In Eq. (B.3), Taylor-expand t1(a∗

i ), t1(a∗
i−1), t0(a∗

i ), and t0(a∗
i−1) at ¯̄ai := (a∗

i +a∗
i−1)/2

to the fourth order and t′
1(ã(K∗

i )) and t′
0(ã(K∗

i )) at ¯̄ai to the first order, getting

ã(K∗
i ) − ¯̄ai = 1

24
t′′′
0 ( ¯̄ai)t′

1( ¯̄ai) − t′′′
1 ( ¯̄ai)t′

0( ¯̄ai)
t′
1( ¯̄ai)t′′

0( ¯̄ai) − t′
0( ¯̄ai)t′′

1( ¯̄ai)
J2

i + S1 + S2 + S3 + S4 + S5 + S6

t′
1( ¯̄ai)t′′

0( ¯̄ai) − t′
0( ¯̄ai)t′′

1( ¯̄ai)
(B.5)

:=T ( ¯̄ai)(a∗
i − a∗

i−1)2 + RemK
i ,

where

S1 = C1(t′
0( ¯̄ai)t′′′

1 (add) − t′
1( ¯̄ai)t′′′

0 (a′
dd)) (ã(K∗

i ) − ¯̄ai)2

S2 = C2(t′′′
0 ( ¯̄ai)t′′

1( ¯̄ai) − t′′′
1 ( ¯̄ai)t′′

0( ¯̄ai)) J2
i (ã(K∗

i ) − ¯̄ai)

S3 = C3(t′′′
0 ( ¯̄ai)t′′′

1 (add) − t′′′
1 ( ¯̄ai)t′′′

0 (a′
dd)) J2

i (ã(K∗
i ) − ¯̄ai)2

S4 = C4((t(5)
0 (a′′

cc) − t
(5)
0 (a′′′

cc))t′
1( ¯̄ai) − (t(5)

1 (acc) − t
(5)
1 (a′

cc))t′
0( ¯̄ai)) J4

i

S5 = C5((t(5)
0 (a′′

cc) − t
(5)
0 (a′′′

cc))t′′
1(āi) − (t(5)

1 (acc) − t
(5)
1 (a′

cc))t′′
0( ¯̄ai)) J4

i (ã(K∗
i ) − ¯̄ai)

S6 = C6((t(5)
0 (a′′

cc) − t
(5)
0 (a′′′

cc))t′′′
1 (add) − (t(5)

1 (acc) − t
(5)
1 (a′

cc))t′′′
0 (a′

dd)) J4
i (ã(K∗

i ) − ¯̄ai)2.

Here, add and a′
dd are between ã(K∗

i ) and ¯̄ai and are respectively in the Taylor remainders
of t′

1(ã(K∗
i )) and t′

0(ã(K∗
i )). acc and a′′

cc are between a∗
i and ¯̄ai and are respectively in the

Taylor remainders of t1(a∗
i ) and t0(a∗

i ). a′
cc and a′′′

cc are between ¯̄ai and ã(K∗
i ) and are

respectively in the Taylor remainders of t1(a∗
i−1) and t0(a∗

i−1). Again with slight abuse
of notations, subscripts i for all aforementioned notations are omitted. Differentiation is
possible by smoothness in Assumption 3. The denominator t′

1( ¯̄ai)t′′
0( ¯̄ai) − t′

0( ¯̄ai)t′′
1( ¯̄ai) < 0

when ¯̄ai ∈ (0, 1) by Assumption 3.
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Then, we can get

Ii − Ii−1 = −2Γ(āi)I2
i − 2Γ(āi−1)I2

i−1 − 4T ( ¯̄ai)J2
i − 2Rema

i − 2Rema
i−1 − 4RemK

i , (B.6)

Ji − Ii−1 = −2Γ(āi−1)I2
i−1 − 2T ( ¯̄ai)J2

i − 2Rema
i−1 − 2RemK

i . (B.7)

Step 2. Investigating dn(x)/dn(y) on (0, 1). Next, choose any small and positive
number α and examine the ratio dn(x)/dn(y), ∀x, y ∈ [α, 1 − α] (x < y). Define iz :=
max{i : ã(K∗

i ) ≤ z} (z ∈ (0, 1)). By Lemma 4, limn→∞ K∗
1 = K

¯
, so dn(x) (x ∈ [α, 1 − α])

should be expressed for a large n as

δn(ã(K∗
ix+1)) − δn(ã(K∗

ix
))

ã(K∗
ix+1) − ã(K∗

ix
) = 1/n

Iix

.

Thus, for any given large n,

dn(x)
dn(y) = (1/n)/Iix

(1/n)/Iiy

=
Iiy

Iix

=
Iiy

Iiy−1
× ... × Iix+1

Iix

= exp
(

ln
(

Iiy

Iiy−1

)
+ ... + ln

(
Iix+1

Iix

))
.

(B.8)
And since Taylor-expanding ln

(
Ii

Ii−1

)
at 1 to the first order gives

ln
(

Ii

Ii−1

)
= Ii

Ii−1
− 1 − 1

2ti
( Ii

Ii−1
− 1)2

where ti is between Ii

Ii−1
and 1, Eq. (B.8) becomes

dn(x)
dn(y) = exp

 iy∑
i=ix+1

( Ii

Ii−1
− 1)

 / exp

 iy∑
i=ix+1

1
2ti

( Ii

Ii−1
− 1)2

 , (B.9)

where Ii/Ii−1 is backed out from Eq. (B.6) to be

Ii

Ii−1
= 1 − 2Γ(āi)Ii

Ii

Ii−1
− 2Γ(āi−1)Ii−1 − 4T ( ¯̄ai)Ji

Ji

Ii−1
−

2Rema
i + 2Rema

i−1 + 4RemK
i

Ii−1
.

(B.10)
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In that expression, Ji/Ii−1 is given by Eq. (B.7) as

Ji

Ii−1
= 1 − 2Γ(āi−1)Ii−1 − 2T ( ¯̄ai)Ji

Ji

Ii−1
−

2Rema
i−1 + 2RemK

i

Ii−1
. (B.11)

Now, discuss Eq. (B.9). First, I show three useful results for later analysis.

Result 1. maxi |Ii/Ii−1 − 1| → 0 and maxi |Ji/Ii−1 − 1| → 0 as n → ∞.
To show Result 1, for brevity let Xi = Ii/Ii−1 and Yi = Ji/Ii−1. Eq. (B.10) and

Eq. (B.11) can be rearranged into the following system of two equations

Xi = 1−2Γ(āi)IiXi−2Γ(āi−1)Ii−1−4T ( ¯̄ai)JiYi−2Rema
i /Ii−1

Xi
Xi−2Rema

i−1/Ii−1−4RemK
i /Ii−1

Yi
Yi,

Yi = 1 − 2Γ(āi−1)Ii−1 − 2T ( ¯̄ai)JiYi − 2Rema
i−1/Ii−1 − 2RemK

i /Ii−1

Yi
Yi.

Solving the system of equations can get us

Xi =
1 − 2Γ(āi−1)Ii−1 − 2Rema

i−1/Ii−1 − (4T ( ¯̄ai)Ji + 4RemK
i /Ii−1
Yi

)Yi

1 + 2Γ(āi)Ii + 2Rema
i /Ii−1
Xi

; (B.12)

Yi = 1 − 2Γ(āi−1)Ii−1 − 2Rema
i−1/Ii−1

1 + 2T ( ¯̄ai)Ji + 2RemK
i /Ii−1
Yi

. (B.13)

Here, Γ, T and all functions appearing in Rema and RemK consisting of higher order
derivatives of g and t are continuous on [α, 1 − α] by the continuous differentiability
assumption and therefore bounded. Denote the uniform upper bound of their absolute
values as M > 0.

Notice that in Rema
i−1, |a∗

i−1 − āi−1| ≤ Ii−1 since both a∗
i−1, āi−1 ∈ [ã(K∗

i−1), ã(K∗
i )]

by Lemma 3(ii). Hence, by Triangular Inequality, |Rema
i−1| ≤ M(I2

i−1 + I3
i−1 + I4

i−1 +
I4

i−1 + I5
i−1 + I6

i−1), and hence |Rema
i−1/Ii−1| ≤ M(Ii−1 + I2

i−1 + 2I3
i−1 + I4

i−1 + I5
i−1). By

maxi Ii−1 → 0 in Lemma 4, maxi |Rema
i−1/Ii−1| → 0.

Also notice that in RemK
i , |ã(K∗

i ) − ¯̄ai| ≤ Ji since both ã(K∗
i ), ¯̄ai ∈ [a∗

i−1, a∗
i ]. Hence,

|RemK
i | ≤ M(J2

i + J3
i + J4

i + J4
i + J5

i + J6
i ), and hence |(RemK

i /Ii−1)/Yi| = |RemK
i /Ji| ≤

M(Ji + J2
i + 2J3

i + J4
i + J5

i ). By maxi Ji → 0 in Lemma 4, maxi |(RemK
i /Ii−1)/Yi| → 0.

Hence in Eq. (B.13), |Γ|, |T | ≤ M , and all indexed terms uniformly converge to 0.
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Thus, Yi → 1 uniformly over [α, 1 − α].
Further notice that in Rema

i , |a∗
i − āi| ≤ Ii since both a∗

i , āi ∈ [ã(K∗
i ), ã(K∗

i+1)]. Hence,
|Rema

i | ≤ M(I2
i + I3

i + I4
i + I4

i + I5
i + I6

i ), and hence |(Rema
i /Ii−1)/Xi| = |Rema

i /Ii| ≤
M(Ii + I2

i + 2I3
i + I4

i + I5
i ). By maxi Ii → 0 in Lemma 4, maxi |(Rema

i /Ii−1)/Xi| → 0.
Hence in Eq. (B.12), |Γ|, |T | ≤ M , Yi uniformly converges to 1 and all other indexed

terms uniformly converge to 0. Thus, Xi → 1 uniformly over [α, 1 − α]. Therefore, Result
1 holds.

Result 2. There exists η ∈ (0, 1) such that Ii/Ii−1, Ji/Ii−1 ∈ [1 − η, 1 + η] for any i and
large n.

Result 2 is a direct corollary of Result 1.

Definition. Let (am)M
m=1, (bm)M

m=1, and (cm)M
m=1 be vectors of nonnegative integers and

let z = min(am + bm + cm)M
m=1. Define oi(z) as the notation of ∑M

m=1 Iam
i−1Ibm

i Jcm
i .

Result 3.
∑iy

i=ix+1 oi(z) → 0 for x, y ∈ [α, 1 − α] if z ≥ 2.
To show Result 3, let a, b, c ≥ 0 be integers and only need to show ∑iy

ix+1 Ia
i−1Ib

i Jc
i → 0

for x, y ∈ [α, 1 − α] if a + b + c ≥ 2. W.l.o.g. let a > 1, then 0 ≤
∑iy

ix+1 Ia
i−1Ib

i Jc
i ≤

(∑iy

ix+1 Ii−1)(maxi Ii−1)a−1(maxi Ii)b(maxi Ji)c = (y−x)(maxi Ii−1)a−1(maxi Ii)b(maxi Ji)c

→ 0. The proof also works if letting b > 1 or c > 1.

With Results 1, 2, and 3, go examine Eq. (B.9). We need to understand Ii/Ii−1 − 1.
Substitute Eq. (B.10) and Eq. (B.11) into the RHS of Eq. (B.10), and deduct one on both
sides, getting

Ii

Ii−1
− 1 = −2Γ(āi)Ii − 2Γ(āi−1)Ii−1 − 4T ( ¯̄ai)Ji + Residuali, (B.14)

where Residuali =

−2Γ(āi)Ii

(
−2Γ(āi)Ii

Ii

Ii−1
− 2Γ(āi−1)Ii−1 − 4T ( ¯̄ai)Ji

Ji

Ii−1
−

2Rema
i + 2Rema

i−1 + 4RemK
i

Ii−1

)

−4T (¯̄ai)Ji

(
−2Γ(āi−1)Ii−1 − 2T ( ¯̄ai)Ji

Ji

Ii−1
−

2Rema
i−1 + 2RemK

i

Ii−1

)
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−
2Rema

i + 2Rema
i−1 + 4RemK

i

Ii−1
.

In Residuali, first examine Rema
i . For terms R2, R3, R4, R5 and R6 in Rema

i , because
|a∗

i − āi| ≤ Ii as shown in Result 1’s proof, each term scaled by its denominator should
have its absolute value respectively not exceeding some constant times I3

i , I4
i , I4

i , I5
i ,

and I6
i . For the term R1, firstly we know scaled |R1| is bounded by a constant times I2

i ,
and secondly we can substitute Eq. (B.4) into the term and get R1 = C1(g′

0(āi)g′′′
1 (ad) −

g′
1(āi)g′′′

0 (a′
d))(Γ(āi)I2

i + Rema
i )2, which contains terms with absolute values not exceeding

some constant times I4
i , I2

i Rema
i (which does not exceed some constant times I2

i (I2
i + I3

i +
I4

i + I4
i + I5

i + I6
i )), and (Rema

i )2 (which does not exceed some constant times I4
i ,...,I12

i ),
so scaled |R1| is actually bounded by some constant times I4

i plus higher orders. Hence,
|Rema

i | is bounded by M1
1+η (I3

i + ... + I12
i ), where M1 is a constant. By Result 2, Ii/Ii−1 ≤

1+η for large n, and hence for large n, |Rema
i

Ii−1
| ≤ M1

1+η
Ii

Ii−1
(I2

i +...+I11
i ) ≤ M1oi(2). Similarly,

if examine Rema
i−1 in the same way, we can get |Rema

i−1
Ii−1

| ≤ M2(I2
i−1 + ...+I11

i−1) ≤ M2oi(2).
Then examine RemK

i . For terms S2, S3, S4, S5 and S6 in RemK
i , because |ãK∗

i
−¯̄ai| ≤ Ji

as shown in Result 1’s proof, each term scaled by its denominator should have its absolute
value respectively not exceeding some constant times J3

i , J4
i , J4

i , J5
i , and J6

i . For the term
S1, firstly we know scaled |S1| is bounded by a constant times J2

i , and secondly we can
substitute Eq. (B.5) into the term and get S1 = C1(t′

0( ¯̄ai)t′′′
1 (add)−t′

1( ¯̄ai)t′′′
0 (a′

dd))(T ( ¯̄ai)J2
i +

RemK
i )2, which contains terms with absolute values not exceeding some constant times J4

i ,
J2

i RemK
i (which does not exceed some constant times J2

i (J2
i +J3

i +J4
i +J4

i +J5
i +J6

i )), and
(RemK

i )2 (which does not exceed some constant times J4
i ,...,J12

i ), so scaled |S1| is actually
bounded by some constant times J4

i plus higher orders. Hence, |RemK
i | is bounded by

M3
1+η (J3

i + ... + J12
i ), where M3 is a constant. By Result 2, Ji/Ii−1 ≤ 1 + η for large n, and

hence for large n, |RemK
i

Ii−1
| ≤ M3

1+η
Ji

Ii−1
(J2

i + ... + J11
i ) ≤ M3oi(2).

Therefore, for large n such that 0 < 1−η ≤ Ii/Ii−1, Ji/Ii−1 ≤ 1+η and some constant
M4,

|Residuali| ≤ M4oi(2) (B.15)

on [α, 1 − α]. Hence, with Result 3, we know

iy∑
i=ix+1

Residuali → 0 (B.16)
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by 0 ≤ |
∑iy

i=ix+1 Residuali| ≤
∑iy

i=ix+1 |Residuali| ≤
∑iy

i=ix+1 M4oi(2) → 0. Taking the
square of Eq. (B.14) and using Eq. (B.15), we can get for large n and some constant M5,
| Ii

Ii−1
− 1|2 ≤ M5oi(2). Hence we know the denominator of Eq. (B.9)

exp

 iy∑
i=ix+1

1
2ti

( Ii

Ii−1
− 1)2

 → 1, (B.17)

because with ti between 1 and Ii/Ii−1 and hence between 1 − η and 1 + η by Result 2,

0 ≤ |
iy∑

i=ix+1

1
2ti

( Ii

Ii−1
− 1)2| ≤ 1

2(1 − η)

iy∑
i=ix+1

( Ii

Ii−1
− 1)2 ≤ 1

2(1 − η)

iy∑
i=ix+1

M5oi(2) → 0.

Now examine Eq. (B.9). Substitute Eq. (B.14) in Eq. (B.9), and rewrite Eq. (B.9) as

dn(x)
dn(y) = exp

 iy∑
i=ix+1

(−2Γ(āi)Ii − 2Γ(āi−1)Ii−1 − 4T ( ¯̄ai)Ji)

× Rest(n; [x, y]),

or equivalently

dn(x)
dn(y) = exp (RS(−4Γ; [x, y]) + RS(−4T ; [x, y])) × Rest(n; [x, y]), (B.18)

where Rest(n; [x, y]) → 1 by Eq. (B.16) and Eq. (B.17), and RS(f, [x, y]) refers to a
Riemann sum of the function f on [x, y]. Because

∫ y
x f ′(a)/f(a)da = ln(|f(a)|)|yx, we get

when x, y ∈ [α, 1 − α],

dn(x)
dn(y) → exp

(
−4

∫ y

x
Γ(a)da − 4

∫ y

x
T (a)da

)

=
∣∣∣∣∣g′

1(x)g′′
0(x) − g′

0(x)g′′
1(x)

g′
1(y)g′′

0(y) − g′
0(y)g′′

1(y)

∣∣∣∣∣
1
6
∣∣∣∣∣t′

1(x)t′′
0(x) − t′

0(x)t′′
1(x)

t′
1(y)t′′

0(y) − t′
0(y)t′′

1(y)

∣∣∣∣∣
1
6

=
∣∣∣∣∣F ′

1(K̃(x))F ′′
0 (K̃(x)) − F ′

0(K̃(x))F ′′
1 (K̃(x))

F ′
1(K̃(y))F ′′

0 (K̃(y)) − F ′
0(K̃(y))F ′′

1 (K̃(y))

∣∣∣∣∣
1
6
∣∣∣∣∣h′(x)h′′(1 − x) + h′(1 − x)h′′(x)
h′(y)h′′(1 − y) + h′(1 − y)h′′(y)

∣∣∣∣∣
1
6
∣∣∣∣∣K̃ ′(x)
K̃ ′(y)

∣∣∣∣∣
1
2

.

Under Assumption 3, |h′(x)h′′(1−x)+h′(1−x)h′′(x)| = −(h′(x)h′′(1−x)+h′(1−x)h′′(x)).
Under the monotone likelihood ratio property in Assumption 4(i), |F ′

1(K̃(x))F ′′
0 (K̃(x)) −

F ′
0(K̃(x))F ′′

1 (K̃(x))| = F ′
0(K̃(x))F ′′

1 (K̃(x)) − F ′
1(K̃(x))F ′′

0 (K̃(x)). By the integrability
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assumption in Theorem 2, the denominator as a function of y is integrable on (0, 1).
Let m(y) > 0 denote the denominator expression scaled by its integral on (0, 1) so that∫ 1

0 m(y)dy = 1. Hence, pointwise for x, y ∈ [α, 1 − α],

lim
n→∞

dn(x)
dn(y) = m(x)

m(y) . (B.19)

For any x, y ∈ (0, 1), Eq. (B.19) holds because one can always find a small α such that
x, y ∈ [α, 1 − α].

Step 3. Closing the Proof. In this step, the first objective is to show for any y ∈ (0, 1),

lim
n→∞

dn(y) = m(y). (B.20)

To show Eq. (B.20), notice that by Eq. (B.19),

1
m(y) =

∫ 1

0

m(x)
m(y)dx =

∫ 1

0
lim

n→∞

dn(x)
dn(y)dx ≤ lim inf

n→∞

∫ 1

0

dn(x)
dn(y)dx = lim inf

n→∞

1
dn(y) = 1

lim sup
n→∞

dn(y) ,

where the inequality is by Fatou’s Lemma and the following equality comes from∫ 1
0 dn(x)dx = 1 for any n. Hence,

m(y) ≥ lim sup
n→∞

dn(y) > 0. (B.21)

Therefore, lim supn→∞ dn(y) and dn(y) are dominated by m(y) which is integrable on
(0, 1). By the Fatou-Lebesgue Theorem,

1 = lim sup
n→∞

1 = lim sup
n→∞

∫ 1

0
dn(y)dy ≤

∫ 1

0
lim sup

n→∞
dn(y)dy ≤

∫ 1

0
m(y)dy = 1

and hence
∫ 1

0 lim supn→∞ dn(y)dy =
∫ 1

0 m(y)dy. With Eq. (B.21), this implies almost
everywhere

lim sup
n→∞

dn(y) = m(y). (B.22)

Next, I show lim infn→∞ dn(y) = m(y) by contradiction. Suppose otherwise, then
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considering Eq. (B.22), there exists y0 ∈ (0, 1) such that

lim inf
n→∞

dn(y0) = m(y0) − δ ∈ [0, m(y0)).

Hence there exists a convergent subsequence {dnk
(y0)} such that

lim
k→∞

dnk
(y0) = m(y0) − δ.

Because of Eq. (B.19), for any x ∈ (0, 1),

lim
k→∞

dnk
(x) = m(y0) − δ

m(y0) m(x).

Then on the one hand, ∫ 1

0
lim

k→∞
dnk

(x)dx = m(y0) − δ

m(y0) ,

but on the other hand, because

dnk
(x) ≤ lim sup

k→∞
dnk

(x) ≤ lim sup
n→∞

dn(x) ≤ m(x),

by the Dominated Convergence Theorem,
∫ 1

0
lim

k→∞
dnk

(x)dx = lim
k→∞

∫ 1

0
dnk

(x)dx = lim
k→∞

1 = 1,

a contradiction. Hence Eq. (B.20) is proven.
Finally, by the arguments in the beginning of Step 1, Eq. (B.20) implies δn(a) →∫ a

0 m(y)dy. Hence,

β∞(K) := lim
n→∞

βn(K) = lim
n→∞

δn(ã(K)) =
∫ ã(K)

0
m(y)dy

and β′
∞(K) = m(ã(K))ã′(K) = λh(K) 1

6 λF (K) 1
6 ã′(K) 1

2 .
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Appendix C. Propositions 4 and 5

Proof. (Proposition 4) (1). By the definition of ã(K),

h′(1 − a)
h′(a) = u1π

u0(1 − π) exp
(2µ

σ2 K

)
. (C.1)

Hence,

K̃(a) = σ2

2µ

(
ln h′(1 − a) − ln h′(a) − ln u1π

u0(1 − π)

)
(C.2)

for a ∈ (0, 1) and K̃(a) = 2K1/2 − K̃(1 − a), implying K̃(a) is symmetric about (1
2 , K1/2).

Thus, ã(K) is symmetric about (K1/2, 1
2) on (K

¯
, K̄). The symmetry obviously holds

outside (K
¯

, K̄). The symmetry of ã(K) implies ã′(K)’s symmetry about K = K1/2.
(2). Evaluate λh(K) at K1/2 + δ and K1/2 − δ with ã(K1/2 + δ) + ã(K1/2 − δ) = 1,

getting λh(K1/2 + δ) = λh(K1/2 − δ).

Proof. (Proposition 5) (1). Since the hump-shaped λh(K) 1
6 ã′(K) 1

2 is symmetric about
K1/2, its value is higher if K is closer to K1/2. Then for K such that KK1/2 > 0, β′

∞(K) =
exp

(
− K2

6σ2

)
λh(K) 1

6 ã′(K) 1
2 ≥ exp

(
− K2

6σ2

)
λh(−K) 1

6 ã′(−K) 1
2 = β′

∞(−K). The inequality is
because the distance between K1/2 and K is closer than between K1/2 and −K.

(1*) Analogous to (1)’s arguments, the value of the U-shaped λh(K) 1
6 ã′(K) 1

2 is lower if
K is closer to K1/2. Then for K such that KK1/2 > 0, β′

∞(K) = exp
(
− K2

6σ2

)
λh(K) 1

6 ã′(K) 1
2

≤ exp
(
− K2

6σ2

)
λh(−K) 1

6 ã′(−K) 1
2 = β′

∞(−K).
(2). Differentiate Eq. (C.1) on both sides with respect to K, rearrange terms, and get

ã′ = 2µ

σ2
h′(ã)2

λh(K)
u1π

u0(1 − π) exp
(2µ

σ2 K

)
.

Meanwhile, differentiate the multiplicative inverse of both sides in the same way and get

ã′ = 2µ

σ2
h′(1 − ã)2

λh(K)

/(
u1π

u0(1 − π) exp
(2µ

σ2 K

))
.

The product of the two equations gives ã′2. Its square root is

ã′ = 2µ

σ2
h′(ã)h′(1 − ã)

λh(K) ,
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implying that

(λ
1
6
h (ã′) 1

2 )6 = λh(ã′)3 = (2µ

σ2 )3 h′(ã)3h′(1 − ã)3

λh(K)2 = (2µ

σ2 )3 h′(ã)3h′(1 − ã)3

(−h′(1 − ã)h′′(ã) − h′′(1 − ã)h′(ã))2 .

Hence, λ
1
6
h (ã′) 1

2 increases (decreases) iff.

d

dã

(
h′(ã)3h′(1 − ã)3

(−h′(1 − ã)h′′(ã) − h′′(1 − ã)h′(ã))2

)
× da

dK
≥ (≤) 0,

i.e.,
d

da

(
h′(a)3h′(1 − a)3

(−h′(1 − a)h′′(ã) − h′′(1 − a)h′(a))2

)
≥ (≤) 0. (C.3)

This needs to hold iff. a < 1
2 for λ

1
6
h (ã′) 1

2 to be hump-shaped in K.
(3). A sufficient condition of Eq. (C.3) (≥) is for both h′′(a)

h′(a) and h′′′(a)
h′(a) to be decreasing

in a. If so, then for a < 1
2 , we have a < 1 − a and hence

3
(

h′′(a)
h′(a) − h′′(1 − a)

h′(1 − a)

)
λh + 2

(
h′′′(a)
h′(a) − h′′′(1 − a)

h′(1 − a)

)
≥ 0.

This implies Eq. (C.3) (≥) holds.
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